

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme, a student would:

	Knowledge Acquisition:
PO1	Demonstrate a profound understanding of knowledge trends and their impact on the chosen discipline of study.
	Communication, Collaboration, Inclusiveness, and Leadership:
PO2	Become a team player who drives positive change through effective communication, collaborative acumen, transformative leadership, and a dedication to inclusivity.
	Professional Skills:
PO3	Demonstrate professional skills to navigate diverse career paths with confidence and adaptability.
	Digital Intelligence:
PO4	Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively processing complex information.
	Scientific Awareness and Critical Thinking:
PO5	Emerge as an innovative problem-solver and impactful mediator, applying scientific understanding and critical thinking to address challenges and advance sustainable solutions.
	Human Values, Professional Ethics, and Societal and Environmental Responsibility:
PO6	Become a responsible leader, characterized by an unwavering commitment to human values, ethical conduct, and a fervent dedication to the well-being of society and the environment.
	Research, Innovation, and Entrepreneurship:
PO7	Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships with industry, academia, and communities to contribute enduring solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the BSc Physics Honours programme, a student would:

PSO1	Understand concepts and applications in the field of Physics viz. Mechanics, Electrodynamics, Thermodynamics, Optics, Quantum Mechanics, Electronics etc.
PSO2	Develop the skills for experimentation to measure, analyse and interpret empirical data, and present the results in a methodical and accessible way.
PSO3	Evaluate complex real-world problems by applying principles of theoretical and applied physics, and mathematical and computational models.
PSO4	Design and execute a Project to solve real-world problems in accordance to the need of the industry and academic research, in a stipulated time frame.
PSO5	Develop understanding of the fundamental concepts of Physics needed for a deeper study of related fields of knowledge viz. Mathematics, Chemistry, Electronics, Computer Science, Geology etc.
PSO6	Develop the experimental and analytical skills in Physics that can be of useful applications in allied areas of knowledge.

BSc PHYSICS HONOURS MAJOR CORE COURSES

Programme	B.Sc. Physics Honours					
Course Title	FUNDAMEN	FUNDAMENTALS OF PHYSICS				
Type of Course	Core in Majo	or				
Semester	I	I				
Academic Level	100 – 199					
Course Details	Credit	Credit Lecture per Tutorial Practical Total Houweek per week per week				
	4	3	-	2	75	
Pre-requisites	Fundamentals of vectors, calculus and kinematics.					
Course Summary		This course explores Newton's Laws of Motion and how they can be applied to solve different mechanical systems.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the concepts of	U	C	Instructor-created
	Newton's Laws of Motion			exams / Quiz
CO2	Apply Newton's Laws of Motion	Ap	P	Instructor-created
	to solve different mechanical			exams / Home
	systems			Assignments
CO3	Apply work-energy theorem to	Ap	P	Instructor-created
	solve different mechanical			exams / Home
	systems			Assignments
CO4	Analyse conservative systems	An	P	Instructor-created
	and solve them using the			exams / Home
	conservation of mechanical			Assignments
	energy.			
CO5	Demonstrate critical thinking and	Ap	P	Seminar Presentation /
	problem-solving skills by			Group Tutorial Work
	applying the concepts and			

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

	techniques learned to solve an extended set of real-world problems.			
CO6	Demonstrate skills to set up and	Ap	P	Practical Assignment /
	perform experiments to test			Observation of
	Newton's Laws of Motion and			Practical Skills / Viva
	related concepts.			Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

IMPORTANT: This course is for the Double Major pathway only. It should not be offered for the other four pathways.

Programme	B. Sc. PhysicsHonor	B. Sc. PhysicsHonours				
Course Title	ELEMENTS OF MODERN PHYSICS					
Type of Course	Core in Major					
Semester	I or II (depending u	pon the bat	ch in the Do	uble Major)		
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
	per week per week Hours					
	4	3	-	2	75	
Pre-requisites	Higher secondary Ph	ysics				
Course	The course integrate	s key princi	ples of mode	ern physics, in	ncluding the	
Summary	Special Theory of Relativity, wave-particle duality, and the Bohr Atom					
	Model, to provide students with a comprehensive understanding of					
	fundamental concept	s and their ap	oplications in	diverse scien	tific fields.	

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the principles of the	U	С	Written exams,
	Special Theory of Relativity			quizzes
CO2	Explain the dual nature of particles	U	С	Problem sets,
	and waves			essays
CO3	Apply relativistic principles to	Ap	P	Problem-solving
	solve problems			exams,
				simulations
CO4	Analyse experimental evidence	An	С	Laboratory
	supporting wave-particle duality			reports, case
				studies

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

CO5	Compare and contrast classical and	An	С	Research papers,
	quantum mechanical models			presentations
CO6	Critically evaluate the limitations	Е	С	Research projects,
	of the Bohr atom model			discussions

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honou	B.Sc. Physics Honours				
Course Title	ELECTRONICS I	ELECTRONICS I				
Type of Course	Core in Major					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	3	-	2	75	
Pre-requisites	The course usually encompasses proficiency in mathematics, physics, and basic circuit theory, alongside computer literacy and potentially some laboratory experience, ensuring students have the foundational knowledge needed for the course material.					
Course Summary	The course provides students with a comprehensive introduction to fundamental concepts in electronics, including circuit analysis, semiconductor devices and digital logic, equipping them with the essential skills and knowledge needed to understand and work with electronic systems.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define the basic concepts of semiconductor physics, including energy bands, charge carriers, and doping.		F	Quizzes

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

CO2	Explain the operating principles of semiconductor diodes, including	U	С	Problem sets, concept maps
	forward and reverse bias conditions.			сопсерт шарз
CO3	Analyse the applications of semiconductor diodes in rectification, clipping, and clamping circuits.	An	С	Research papers, case studies
CO4	Explain the principles of operation of bipolar junction transistors (BJTs) and field-effect transistors (FETs), including their modes of operation and characteristics.	U	С	Problem sets, concept maps
CO5	Apply transistor models to analyse amplifier circuits.	Ap	Р	Laboratory experiments, simulations
CO6	Define the basic concepts of digital electronics, including binary number systems, hexadecimal number systems	R	С	Quizzes

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Phy	B.Sc. Physics Honours				
Course Title	MECHA	NICS -I				
Type of Course	Core in M	I ajor				
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	4	-	-	60	
Pre-requisites	PHY1CJ101: Fundamentals of Physics					
Course Summary		This course explores Newton's Laws of Motion and how they can be applied to solve different mechanical systems.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
	CO Statement	Level*	Category#	used

CO1	Understand the concepts of linear and angular momentum, and dynamics of linear and rotational motion	U	С	Instructor-created exams / Quiz
CO2	Understand the concepts of the conservation laws of linear and angular momentum	U	С	Instructor-created exams / Quiz
СОЗ	Analyse collisions of particles using the conservation of linear momentum	An	P	Instructor-created exams / Home Assignments
CO4	Analyse rotating systems using the conservation of angular momentum	An	P	Instructor-created exams / Home Assignments
CO5	Demonstrate critical thinking and problem-solving skills by applying the concepts and techniques learned to solve an extended set of real-world problems.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO6	Demonstrate computational skills to solve an extended set of computational projects based on real-world problems	Ap	P	Seminar Presentation / Group Tutorial Work / Group Project

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours						
Course Title	COMPUTATIONAL PHYSICS						
Type of Course	Core in Major						
Semester	III						
Academic Level	200-299						
Course Details	Credit	Credit Lecture Tutorial Practical Total per week per week Hours					
	4	3	-	2	75		
Pre-requisites	Basic computer knowledge.						
Course Summary	This course aims to equip students with computational and simulation methods in physics using Python programming. Numerical methods for						

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

differentiation, integration, solving differential equations, interpolation and curve fitting are introduced.

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand computational thinking by	U	F	Instructor-created
	learning Logical and algorithmic			exams.
	thinking.			
CO2	Understand python syntax and write	Ap	P	Instructor-created
	basic python programs using loops,			exams / Practical
	several data types etc			Assignment
CO3	Understand Numpy and matplotlib	Ap	P	Instructor-created
	modules and apply them to matrix			exams / Practical
	manipulation and graphing data.			Assignment
CO4	Understand the significance of	U	F	Instructor-created
	computational methods in physics.			exams / Seminar
				Presentation
CO5	Understanding the concepts of	Ap	P	Instructor-created
	interpolation, curve fitting, numerical			exams / Practical
	differentiation, integration and ODEs			Assignment
	in physics using python			
CO6	Applying the computational and	Ap	P	Instructor-created
	simulation methods to several branches			exams / Practical
	of physics using python.			Assignment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours						
Course Title	ELECTRODYNAM	ELECTRODYNAMICS I					
Type of Course	Core in Major						
Semester	IV						
Academic Level	200 - 299						
Course Details	Credit	Credit Lecture Tutorial Practical Total per week per week Hours					
	4	3	-	2	75		
Pre-requisites	A strong foundation in mathematics, including algebra, trigonometry, and calculus. Additionally, a basic understanding of physics concepts such as						

	electricity, magnetism, and mechanics would be beneficial for grasping the principles covered in the course.					
Course Summary	The course provides a foundational exploration of electromagnetism, encompassing topics like electric fields, magnetic fields and electromagnetic induction. Through simplified explanations, illustrative examples, and conceptual exercises, students gain insight into the behavior and interactions of electric and magnetic fields, preparing them for more advanced studies in physics or related fields at the undergraduate level.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply vector analysis techniques to solve problems in electromagnetics	Ap	Category#	Problem-solving assignments, quizzes
CO2	Analyze and calculate electric fields and potentials for various charge distributions	An	Р	Homework assignments, exams, simulation exercises
CO3	Investigate the behavior of magnetic fields and solve problems involving magnetostatics	Е	С	Laboratory reports, group projects, exams
CO4	Utilize electrical measurement instruments to quantify electric and magnetic phenomena	Ap	P	Laboratory experiments, instrument operation tests, practical assessments
CO5	Demonstrate an understanding of Maxwell's equations and their implications in electromagnetism	U	С	Concept maps, oral presentations, written exams
CO6	Apply theoretical knowledge to analyze and design simple electromagnetic systems	C	P	Design projects, case studies, final projects

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours
-----------	-----------------------

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course Title	MECHANICS -II							
Type of Course	Core in Majo	Core in Major						
Semester	IV	IV						
Academic Level	200 - 299							
Course Details	Credit Lecture per Tutorial Practical T week per week per week							
	4	3	-	2	75			
Pre-requisites	PHY3CJ201: Mechanics -I							
Course Summary		This course explores Newton's Laws of Motion and how they can be applied to solve different mechanical systems.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Understand the concepts of	U	C	Instructor-created
	Newton's Laws of Motion			exams / Quiz
CO2	Apply Newton's Laws of Motion	Ap	P	Instructor-created
	to solve different mechanical			exams / Home
	systems			Assignments
CO3	Apply work-energy theorem to	Ap	P	Instructor-created
	solve different mechanical			exams / Home
	systems			Assignments
CO4	Analyse conservative systems	An	P	Instructor-created
	and solve them using the			exams / Home
	conservation of mechanical			Assignments
	energy.			
CO5	Demonstrate critical thinking and	Ap	P	Seminar Presentation /
	problem-solving skills by			Group Tutorial Work
	applying the concepts and			
	techniques learned to solve an			
	extended set of real-world			
	problems.			
CO6	Demonstrate skills to set up and	Ap	P	Practical Assignment /
	perform experiments to test			Observation of
	Newton's Laws of Motion and			Practical Skills / Viva
* D	related concepts.			Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Programme

Course Title	MODERN PHYSICS						
Type of Course	Core in Major	Core in Major					
Semester	IV	IV					
Academic Level	200 - 299						
Course Details	Credit Lecture Tutorial Practical Total per week per week Hours						
	4	3	-	2	75		
Pre-requisites	Foundation in classical mechanics and electromagnetism. Additionally, students should have a solid understanding of calculus and differential equations to effectively engage with the mathematical concepts presented in the course.						
Course Summary	The course integrates key principles of modern physics, including the Special Theory of Relativity, wave-particle duality, and the Bohr Atom Model, to provide students with a comprehensive understanding of fundamental concepts and their applications in diverse scientific fields. Through theoretical discussions and experimental investigations, students develop critical thinking skills and the ability to analyse complex physical phenomena at both macroscopic and microscopic levels.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of the Special Theory of Relativity	U	С	Written exams, quizzes
CO2	Explain the dual nature of particles and waves	U	С	Problem sets, essays
CO3	Apply relativistic principles to solve problems	Ap	P	Problem- solving exams, simulations
CO4	Analyse experimental evidence supporting wave-particle duality	An	С	Laboratory reports, case studies
CO5	Compare and contrast classical and quantum mechanical models	An	С	Research papers, presentations
CO6	Critically evaluate the limitations of the Bohr atom model	Е	С	Research projects, discussions

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honou	B.Sc. Physics Honours			
Course Title	ELECTRODYNAM	ELECTRODYNAMICS II			
Type of Course	Core in Major				
Semester	v	V			
Academic Level	300-399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	PHY4CJ203- Electro	dynamics I			
Course Summary	The course emphasizes the development of mathematical techniques such as vector calculus and differential equations to solve complex problems in electromagnetism. Through theoretical discussions, problem-solving sections, and possibly laboratory experiments, students gain a deep understanding of electromagnetic phenomena and their applications in various fields such as optics, electronics, and telecommunications.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the fundamental principles of electromagnetism and Maxwell's equations	U	С	Written exams, quizzes
CO2	Apply mathematical techniques such as vector calculus and differential equations to solve electromagnetic problems	Ap	Р	Problem sets, simulations
CO3	Analyze the behavior of electromagnetic fields in various media and under different boundary conditions	An	С	Homework assignments, exams
CO4	Derive and interpret the electromagnetic wave equation and its solutions	U	С	Class discussions, presentations
CO5	Predict and analyze the behavior of electromagnetic waves in different contexts, such as optics and antenna theory	Ap	Р	Laboratory experiments, projects
CO6	Design and analyze complex electromagnetic systems and	С	Р	Research papers, presentations

	devices using advanced			
	electrodynamics principles			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)				
# - Fac	tual Knowledge(F) Conceptual Know	vledge (C) Proce	dural Knowl	edge (P)
Metaco	ognitive Knowledge (M)			

Programme	B.Sc. Physics Honou	ırs			
Course Title	OPTICS				
Type of Course	Core in Major				
Semester	V				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	Fundamental understanding of basic physics principles, including optics, electromagnetic waves, and mathematical concepts such as calculus and trigonometry.				
Course Summary	The course offers an in-depth study of light phenomena, covering polarization effects, diffraction phenomena, and their applications in optical systems and technologies.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define the basic principles of optics.	R	С	Quizzes
CO2	Analyse optical phenomena using Fermat's Principle, such as reflection and refraction.	An	С	Research papers, case studies
СОЗ	Apply the principles of optics to design optical systems.	Ap	P	Laboratory experiments, projects
CO4	Analyse optical phenomena interference	An	P	Research papers, case studies
CO5	Apply diffraction principles to analyze patterns	Ap	Р	Laboratory experiments, simulations

	produced by various apertures and obstacles.			
CO6	Apply polarization concepts to analyze optical	Ap	P	Laboratory experiments,
	phenomena.			simulations

Metacognitive Knowledge (M)

Programme	B.Sc. Physics I	B.Sc. Physics Honours			
Course Title	QUANTUM M	QUANTUM MECHANICS I			
Type of Course	Core in Major	Core in Major			
Semester	V	V			
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	Fundamental Mathematics Concepts: Vector, Matrix, 2nd Order ODE, Probability.				
Course Summary	This comprehensive course aims to provide students with a solid foundation in quantum mechanics, delving into theoretical concepts, honing problem-solving skills, and offering exciting possibilities through hands-on simulations.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate a deep understanding of the foundational principles of quantum mechanics	U	С	Written exams, quizzes
CO2	Solve complex quantum mechanical problems using mathematical formalism such as the Schrödinger equation	Ap	P	Problem sets, simulations
CO3	Analyze the quantum behavior of systems with discrete and continuous spectra	An	С	Homework assignments, exams

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

CO4	Explain the physical significance of quantum mechanical operators and their properties	U	С	Class discussions, presentations
CO5	Predict the outcomes of quantum experiments and interpret their results within the framework of quantum theory	E	С	Virtual lab experiments, projects
CO6	Apply quantum mechanics principles to understand topics such as box problem and quantum harmonic oscillator	Ap	P	Research papers, presentations

Programme	B.Sc. Physics Honou	B.Sc. Physics Honours			
Course Title	THERMODYNAM	THERMODYNAMICS			
Type of Course	Core in Major				
Semester	VI	VI			
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	Proficiency in calculus, basic physics principles including mechanics and heat transfer, and a foundational understanding of chemistry are typically prerequisites for an undergraduate thermodynamics course.				
Course Summary	Thermodynamics course covers fundamental principles such as the conservation of energy, entropy, and thermodynamic properties of substances, providing students with the knowledge to analyse and predict the behaviour of systems in various contexts, from power generation to environmental processes				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate a solid understanding of	U	C	Conceptual
	the fundamental principles of			quizzes,
	thermodynamics, including the laws			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	of thermodynamics and their mathematical representations.			written examinations
CO2	Apply thermodynamic concepts to analyze and solve problems in classical physics.	Ap	P	Problem- solving exercises, laboratory experiments
CO3	Utilize mathematical tools, including calculus and differential equations, to model thermodynamic systems and predict their behavior.	Ap	Р	Mathematical problem sets, computational assignments
CO4	Interpret thermodynamic properties of materials and their phase transitions, connecting theoretical concepts with experimental observations.	An	M	Data analysis projects, laboratory reports
CO5	Evaluate and compare the efficiency and performance of thermodynamic processes and cycles, including practical applications such as heat engines and refrigeration systems.	Е	M	Performance assessments, design projects
CO6	Apply thermodynamics principles to interdisciplinary areas such as materials science, environmental science, and astrophysics, demonstrating the relevance and versatility of thermodynamic concepts.	Ар	P	Research projects, case studies

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours						
Course Title	ELECTRONICS II	ELECTRONICS II					
Type of Course	Core in Major						
Semester	VI						
Academic Level	300 - 399	300 - 399					
Course Details	Credit	Credit Lecture Tutorial Practical Total per week per week Hours					
	4	3	-	2	75		
Pre-requisites	PHY2CJ101- Electronics I						

Course	Course provides students with a comprehensive understanding of
Summary	transistor operation, FET characteristics, and Op-Amp applications,
	preparing them for designing and analyzing electronic circuits.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental principles of analog and digital electronics.	U	С	Quizzes, Tests
CO2	Analyse different types of amplifiers and their applications.	An	P	Homework Assignments
CO3	Design amplifier circuits based on given specifications.	Ap	P	Laboratory Experiments
CO4	Analyse the operation of different types of FETs (JFETs, MOSFETs).	An	P	Homework Assignments
CO5	Understand the operational principles of Operational Amplifiers (Op-amps).	U	С	Quizzes, Assignments
CO6	Analyse and design sequential logic circuits using state diagrams and flip-flops.	An	Р	Laboratory Experiments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours						
Course Title	NUCLEAR AND PARTICLE PHYSICS						
Type of Course	Core in Major	Core in Major					
Semester	VI	VI					
Academic Level	300 - 399	300 - 399					
Course Details	Credit Lecture Tutorial Practical Total per week per week per week Hours						
	4	4	-	-	60		

Pre-requisites	Strong foundation in classical mechanics, electromagnetism, quantum mechanics, and mathematics along with a basic understanding of modern physics concepts.
Course Summary	The course in nuclear and particle physics provides an in-depth exploration of the fundamental constituents of matter, their interactions, and the underlying principles governing nuclear structure, particle behavior, and their implications in theoretical and experimental physics.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental principles of nuclear and particle physics.	U	С	Quizzes, Tests
CO2	Analyse nuclear structure and properties, including nuclear forces and decay processes.	An	Р	Homework Assignments
CO3	Apply theoretical models to predict nuclear reactions and particle behavior.	Ap	С	Problem Sets, Projects
CO4	Analyse the processes and mechanisms of radioactive decay.	An	P	Homework, Exams
CO5	Describe the operation and components of particle accelerators.	U	F	Virtual lab Demonstrations
CO6	Analyse the principles and techniques of particle Detectors.	An	С	Problem Sets, Exams

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours							
Course Title	MATHEMA	MATHEMATICAL PHYSICS						
Type of Course	Core in Majo	Core in Major						
Semester	VII	VII						
Academic Level	400 - 499							
Course Details	Credit	Credit Lecture per Tutorial Practical Total Hours week per week						

	4	3	-	2	75		
Pre-requisites	Fundamentals	Fundamentals of vectors, calculus and kinematics.					
Course Summary	This course explores Newton's Laws of Motion and how they can be applied to solve different mechanical systems.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate proficiency in manipulating matrices and tensors algebraically and geometrically	Ap	P	Written exams, problem sets
CO2	Apply various transforms such as Fourier, Laplace, and Z- transforms to analyze signals and systems	Ap	P	Homework assignments, exams
CO3	Understand the properties and applications of special functions such as Bessel, Legendre, and Hermite functions	U	С	Class discussions, presentations
CO4	Solve differential equations using series solutions methods, including power series and Frobenius methods	Ap	P	Laboratory experiments, simulations
CO5	Analyze the behavior of complex functions, including their mappings and singularities, in the complex plane	An	С	Projects, research papers
CO6	Utilize complex analysis techniques to solve problems in physics, engineering, and other applied fields	Ap	P	Design projects, presentations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours
Course Title	CLASSICAL MECHANICS

Type of Course	Core in Major						
Semester	VII						
Academic Level	400 - 499	400 - 499					
Course Details	Credit Lecture Tutorial Practical Total per week per week Hours						
	4	3	-	2	75		
Pre-requisites	Strong foundation in introductory physics covering Kinematics, Dynamics and basic calculus, alongside a familiarity with vectors, Newton's laws of motion, and mathematical techniques such as differential and integral calculus.						
Course Summary	Exploring topics such as Lagrangian and Hamiltonian Mechanics, Variational principles and coupled oscillations, often incorporating advanced mathematical techniques like differential geometry and calculus of variations.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of calculus of variations and its applications in finding extremals of functionals	U	C	Written exams, quizzes
CO2	Apply variational calculus techniques to solve problems involving optimization and constraint satisfaction	Ap	Р	Problem sets, simulations
CO3	Analyze the Lagrangian formulation of classical mechanics and its equivalence to Newtonian mechanics	An	С	Homework assignments, exams
CO4	Derive and interpret the Euler- Lagrange equation and its solutions for various physical systems	An	Р	Class discussions, presentations
CO5	Formulate and solve Hamilton's equations of motion for dynamical systems in phase space	Ap	Р	Laboratory experiments, projects
CO6	Investigate the behavior of coupled oscillators and their dynamics using analytical and numerical methods	An	С	Research papers, presentations

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

- * Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- # Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics I	B.Sc. Physics Honours					
Course Title	QUANTUM M	QUANTUM MECHANICS II					
Type of Course	Core in Major						
Semester	VII						
Academic Level	400 - 499	400 - 499					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Fundamental Physical and Mathematics Concepts of Quantum Mechanics						
Course Summary	of quantum the	Delves deeper into the mathematical formalism and theoretical principles of quantum theory, exploring topics such as advanced wave function theory, scattering theory, perturbation theory,etc.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate Proficiency in Solving Schrödinger Equation Problems in Spherical Polar Coordinates.	Ap	Р	Instructor- created exams / Quiz
CO2	Analyze Angular Momentum Concepts and Apply Them to Quantum Systems.	An	Р	Practical Assignment / Observation of Practical Skills
CO3	Construct and Interpret Eigenvalues and Eigenfunctions of Angular Momentum Operators	С	P	Seminar Presentation / Group Tutorial Work

CO4	Evaluate Perturbation Theory Techniques for Solving Quantum Mechanical Problems.	E	Р	Instructor- created exams / Home Assignments
CO5	Critically Analyze Scattering Phenomena and Predict Experimental Outcomes.	Е	С	One Minute Reflection Writing assignments
CO6	Synthesize Advanced Quantum Mechanical Concepts to Solve Complex Problems.	С	М	Viva Voce

Programme	B.Sc. Physics Honou	B.Sc. Physics Honours				
Course Title	STATISTICAL ME	CHANICS				
Type of Course	Core in Major					
Semester	VII					
Academic Level	400 – 499					
Course Details	Credit Lecture Tutorial Practical Total per week per week Per week Hours					
	4	3	-	2	75	
Pre-requisites	A solid foundation in classical mechanics, quantum mechanics, and thermodynamics. Additionally, proficiency in calculus, differential equations, and linear algebra is essential for understanding the mathematical formalism used in statistical mechanics. A familiarity with probability theory and basic concepts of probability distributions can also be beneficial, as statistical mechanics involves the statistical analysis of large ensembles of particles to understand their collective behavior and properties.					
Course Summary	The course on statistical mechanics explores the principles governing the collective behaviour of large systems of particles, utilizing probabilistic methods to understand thermodynamic properties and the microscopic origins of macroscopic phenomena.					

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the concept of multiplicity	U	С	Written exams, quizzes
CO2	Apply the second law of thermodynamics	Ap	Р	Problem sets, lab experiments
CO3	Analyze changes in entropy in various systems	An	P	Case studies, simulations
CO4	Utilize Boltzmann statistics in statistical mechanics	Ар	Р	Problem-solving exercises, projects
CO5	Employ quantum statistics in understanding systems	Ap	Р	Research papers, presentations
CO6	Evaluate thermodynamic variables in complex systems	Е	Р	Research projects, oral exams

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honou	ırs			
Course Title	Electronics III				
Type of Course	Core in Major				
Semester	VII				
Academic Level	400 - 499				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	PHY2CJ101- Electro	nics I and PH	HY6CJ305- E	Electronics II	
Course Summary	Exploration of cutting-edge concepts and methodologies in digital and analog electronics, delving into advanced topics such as high-frequency circuit design, mixed-signal systems, and emerging semiconductor technologies.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

CO1	Understand the fundamental principles of analog and digital electronics.	U	С	Quizzes, Tests
CO2	Analyse different types of amplifiers and their applications.	An	P	Homework Assignments
CO3	Design amplifier circuits based on given specifications.	Ap	P	Laboratory Experiments
CO4	Analyse the operation of different types of FETs (JFETs, MOSFETs).	An	Р	Homework Assignments
CO5	Understand the operational principles of Operational Amplifiers (Op-amps).	U	С	Quizzes, Assignments
CO6	Analyse and design sequential logic circuits using state diagrams and flip-flops.	An	Р	Laboratory Experiments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	SOLID STA	TE PHYSICS	5			
Type of Course	Core in Majo	or				
Semester	VIII					
Academic Level	400 - 499	400 -499				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	3	-	2	75	
Pre-requisites	The prerequisites for a course in solid state physics typically include a strong foundation in classical mechanics, electromagnetism, quantum mechanics, thermodynamics and statistical mechanics, and optionally solid state chemistry, along with recommended physics laboratory experience					
Course Summary		-	-		ne fundamental hase, exploring	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

topics such as crystal structures, electronic properties, thermal properties, magnetic phenomena, and their applications, with an emphasis on understanding the microscopic origins of macroscopic properties and phenomena observed in solid materials.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of crystal structures and their classification schemes	U	С	Written exams, quizzes
CO2	Analyze the electronic band structure of solids and its implications for electrical conductivity	An	Р	Problem sets, simulations
CO3	Explain the principles of quantum mechanics as applied to solid state systems	U	С	Class discussions, presentations
CO4	Predict and interpret the thermal properties of solids using statistical mechanics	Ap	С	Laboratory experiments, projects
CO5	Investigate the magnetic properties of materials based on their atomic and electronic structures	An	Р	Research papers, presentations
CO6	Apply solid state physics principles to real-world applications such as semiconductor devices	Ap	Р	Case studies, group projects

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics	B.Sc. Physics Honours				
Course Title	SPECTROS	SPECTROSCOPY				
Type of Course	Core in Maj	Core in Major				
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

	4	4	-	-	60
Pre-requisites	Strong foundation in atomic structure, chemical bonding and electromagnetic radiation and also require knowledge of quantum mechanics.				
Course Summary	The molecular spectroscopy course covers the principles, techniques, and applications of analysing molecular structures and dynamics using various spectroscopic methods.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles of molecular spectroscopy	Ŭ	С	Written exams, quizzes
CO2	Apply spectroscopic techniques to analyse molecules	Ap	P	Laboratory reports, projects
CO3	Interpret spectroscopic data accurately	An	P	Problem sets, case studies
CO4	Critically evaluate the limitations of spectroscopic methods	E	С	Research papers, presentations
CO5	Demonstrate proficiency in spectral interpretation	С	Р	Oral exams, practical exams
CO6	Relate spectroscopic theory to real-world applications	Ap	С	Research projects, case studies

Programme	B.Sc. Physics Honours				
Course Title	ELECTRODYNAM	IICS III			
Type of Course	Core in Major	Core in Major			
Semester	VIII	VIII			
Academic Level	400-499				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Pre-requisites	Electrodynamics I and II
Course Summary	Students explore the intricate theoretical foundations and advanced applications of electromagnetism, delving into topics such as Maxwell's equations, electromagnetic waves, electromagnetic field theory, relativistic electrodynamics, and their applications in modern physics and engineering.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate mastery of Maxwell's equations and their applications in various contexts	Ap	P	Written exams, problem sets
CO2	Analyze electromagnetic wave propagation and interaction with matter using advanced mathematical techniques	An	Р	Homework assignments, exams
CO3	Explain the physical significance of electromagnetic potentials and gauge transformations	U	С	Class discussions, presentations
CO4	Predict and interpret the behavior of electromagnetic fields in complex geometries and boundary conditions	An	Р	Laboratory experiments, simulations
CO5	Apply relativistic electrodynamics principles to describe electromagnetic phenomena in the context of special relativity	Ар	Р	Projects, research papers
CO6	Design and analyze advanced electromagnetic systems and devices, demonstrating creative problem-solving skills	С	Р	Design projects, presentations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours
Course Title	PRINCIPLES OF RESEARCH METHODOLOGY
Type of Course	Core in Major
Semester	VIII

Academic Level	400 - 499				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	Major courses in first 6 semester				
Course Summary	This course equips students with the critical thinking skills and scientific methods to distinguish facts, design experiments, and analyze research.				

CO	CO Statement		Knowledge	
		Level*	Category#	
CO1	Distinguish between scientific facts, generalizations, and pseudo-science, understanding the social nature of scientific activity and its role in	U	С	Instructor- created exams / Quiz
	democratic development.			
CO2	Critically evaluate the limitations of science, including its underlying assumptions and challenges in defining reality and rationality.	Е	P	Instructor- created exams / Quiz
CO3	Explain the key concepts of description, causality, prediction, and explanation in science, along with the role of mathematics in scientific endeavors.	U	С	Instructor- created exams / Quiz/Viva
CO4	Differentiate between hypotheses, theories, and laws, critically evaluating the processes of verification, falsification, acceptance, and peer review in the scientific method.	An	Р	Instructor- created exams / Home Assignments
CO5	Apply principles of measurement, including operationalization (variables and indicators), to scientific research. Students will be able to evaluate the validity, reliability, and reproducibility/replicability of measurements and identify potential sources of error.	Ар	Р	Home Assignments
CO6	Design and analyze experiments, understanding the roles and limitations of experimentation, including natural, manipulative, and comparative approaches. Students will be able to assess the validity and reliability of	С	М	Seminar/ Viva

	experiments using appropriate			
	epistemological strategies.			
* - Rei	member (R), Understand (U), Apply (Ap), A	Analyse (An)	, Evaluate (E), Create (C)
# - Fac	ctual Knowledge(F) Conceptual Knowledge	(C) Procedu	ral Knowledg	ge (P)
Metac	ognitive Knowledge (M)			

MAJOR ELECTIVE COURSES

Programme	B.Sc. Physics Honours					
Course Title	PROPERTI	ES OF SOLII	OS			
Type of Course	Major Electi	ve (Specializa	tion 1: Mater	rials Science)		
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	The prerequi	sites for the co	ourse on cryst	al structure, th	eory of solids,	
	semiconducto	or properties,	and dielectric	and magnetic	properties of	
	solids includ	e a solid four	ndation in phy	ysics, mathema	atics, quantum	
	mechanics, cl	hemistry, elect	ricity, and ma	gnetism.		
Course Summary	The course pr	rovides a comp	orehensive stu	dy of crystal st	ructure, theory	
	of solids, semiconductor properties, and dielectric and magnetic					
	properties of	properties of solids, aiming to understand the fundamental principles				
	governing the	e behavior of n	naterials in the	ese domains.		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate an understanding of crystal structures and their impact on material properties	Ap	C	Examinations, Assignments
CO2	Analyze the theoretical models of solids and their applicability to real-world scenarios	An	Р	Problem Sets, Case Studies
CO3	Evaluate semiconductor properties and their role in electronic device functionality	Е	Р	Laboratory Experiments, Projects
CO4	Explain the principles underlying dielectric properties of solids and their technological applications	U	С	Presentations, Written Reports
CO5	Investigate magnetic properties of solids and their implications in magnetic storage and sensing technologies	E	Р	Research Papers, Presentations
CO6	Synthesize knowledge of crystal structure, theory of solids, semiconductor, dielectric, and magnetic properties to propose solutions to complex material-related problems	С	M	Capstone Projects, Oral Defenses

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

- * Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Programme	B.Sc. Physics	Honours			
Course Title	MATERIALS SCIENCE				
Type of Course	Major Elective	e (Specializati	on 1: Materia	als Science)	
Semester	V				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	4	-	-	60
Pre-requisites	A strong found	ation in physic	s and chemist	ry.	
Course	This course aims to provide students with a comprehensive understanding				
Summary	of the fundame	of the fundamental principles underlying the behavior of materials, as			
	well as the cutt	ing-edge techr	ologies drivin	g innovation in	n this field.

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the various types of	An	F	Instructor-
	materials, the bonding between the			created exams /
	elements and molecules, and type of			Quiz
	interacting forces among the			
	molecular systems			
CO2	Develop a fundamental understanding	R	F	Instructor-
	of the importance of the structure of			created exams /
	the compounds and performance of			Quiz
	materials.			
CO3	Gain knowledge about the different	Ap	F	Instructor-
	types of materials that are used in			created exams /
	different applications and the			Quiz
	different properties of diversified			
	materials.			
CO4	Familiarize students with advanced	An	F	Instructor-
	characterization techniques used to			created exams /
	analyze materials structurally,			Quiz
	surface, optically, electrically and			
	magnetically.			

CO5	Explore the applications of advanced	An	F	Instructor-
	materials in various industries, energy			created exams /
	technology, and electronic and other			Quiz
	applications			
CO6	Make the students capable of	Ap	F	Instructor-
	developing various materials through			created exams /
	project work.			Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics	B.Sc. Physics Honours				
Course Title	NANOSCIEN	NANOSCIENCE AND TECHNOLOGY				
Type of Course	Major Elective	e (Specializati	on 1: Materia	als Science)		
Semester	VI					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	PHY5EJ302(1)	- Materials Sc	ience			
Course	This Nanoscience and Technology aims to provide students with a solid					
Summary	foundation in	foundation in the principles, techniques, and applications of				
	nanotechnology	y, preparing th	em for careers	s in research an	d industry.	

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understanding of Nanoscale Phenomena,	U	F	Instructor-
	the unique properties and behaviors of			created exams
	materials at the nanoscale.			/ Quiz
CO2	Understand the science of nanomaterials: including quantum effects, surface	Ap	F	Instructor- created exams
	phenomena, and size-dependent			/ Quiz
	properties.			
CO3	Understand the knowledge about the type of nanomaterials and how the size effect affects the transport properties in nanomaterials	An	F	Instructor- created exams / Quiz
CO4	Knowledge of Nanofabrication	U	F	Instructor-
	Techniques: Students should learn about			created exams
	various techniques used to fabricate			/ Quiz

	nanostructures and nanomaterials, such as top-down and bottom-up approaches.			
CO5	To familiar with a range of characterization techniques used to analyze nanomaterials and nanostructures using conventional and advanced techniques.	An	F	Instructor- created exams / Quiz
CO6	Research Skills: Depending on the level of the course, students may develop research skills through laboratory work, independent projects, or literature reviews.	Ap	F	Instructor- created exams / Quiz

Programme	B.Sc. Physics Honours				
Course Title	OPTOELEC	OPTOELECTRONICS AND SEMICONDUCTOR DEVICES			
Type of Course	Major Electiv	ve (Specializati	on 1: Materia	als Science/ Sp	pecialization
	II: Photonics)			
Semester	VI				
Academic	300 - 399				
Level					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	4	-	-	60
Pre-requisites	PHY5EJ302(1	l)- Materials Sc	ience		
Course	The Optoelec	tronics and Se	emiconductor	Devices cour	rse focuses on
Summary	equipping stu	equipping students with an understanding of the principles, operation,			
	design, and a	pplications of	optoelectronic	devices and	semiconductor
	devices.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understanding the operation and characteristics of various optoelectronic devices, such as light-emitting diodes (LEDs), laser diodes, etc	U	F	Instructor- created exams / Quiz
CO2	Understanding of semiconductor physics, including band theory,	R	F	Instructor- created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	carrier transport, and semiconductor device operation principles.			
CO3	Understand the knowledge about the radiative transition processes and other optoelectronic phenomenon.	Ap	F	Instructor- created exams / Quiz
CO4	Understand the applications of optoelectronic and semiconductor devices in various fields such as telecommunications, imaging, sensing, displays, and energy conversion.	An	F	Instructor- created exams / Quiz
CO5	To be familiar with equipment and devices that work on the principle of semiconducting phenomena and theories of optoelectronics	Ap	F	Instructor- created exams / Quiz
CO6	Students will gain hands-on experience through laboratory experiments involving the characterization and testing of optoelectronic and semiconductor devices	An	F	Instructor- created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours					
Course Title	PHOTONICS					
Type of Course	Major Elective (Spe	Major Elective (Specialization II: Photonics)				
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	4	-	-	60	
Pre-requisites	Fundamental knowle	dge in Optics	S			
Course Summary	Photonics is the science and technology of generating, controlling, and detecting photons, which are particles of light. This course covers topics such as the fundamentals of light-matter interaction, optical components and systems, laser technology and fiber optics. It's a multidisciplinary field that combines elements of physics, optics and materials science to harness light for a wide range of practical purposes.					

-TRICHUR-

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
	Understand the concept and principles of energy levels, spontaneous emission and stimulated emission, optical gain, and threshold condition for lasing.		C	Written exams and quizzes
	Understand the principles and working of various laser systems.	An	P	Presentations, written exam
	Giving a rigorous theoretical background and framework for a nonlinear optical effect, followed by details of how such an effect is implemented in real applications.	U	С	Written exams, Assignments
	Understand the physical principles of optical fiber and the loss mechanisms in optical fiber. Demonstrate the understanding of fiber optic sensors.	Ap	С	Written exams and quizzes, experiments
CO5	world applications such as lasers and Optical fiber	Ap	C	Simple projects

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics	B.Sc. Physics Honours				
Course Title	INTRODUCT	INTRODUCTORY MOLECULAR SPECTROSCOPY				
Type of Course	Major Elective	e (Specializati	on II: Photor	nics)		
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
	week	per week	per week			
	4	4	-	-	60	
Pre-requisites	PHY4CJ205- N	Modern Physic	S			
Course Summary	Introductory Molecular Spectroscopy provides a comprehensive overview of the principles governing the interaction between light and molecules. Students delve into spectroscopic techniques such as infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy, gaining insights into molecular structure, dynamics, and interactions.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Gain basic knowledge on electromagnetic spectrum, spectral lines and diverse branches in spectroscopy	U	С	Viva Voce/ Seminar / Quiz
CO2	Gain theoretical know-how on rotational spectrum of diatomic and polyatomic molecules	An	Р	Practical Assignment / Group Discussion
CO3	Gain theoretical know-how on vibrational spectrum of diatomic and polyatomic molecules	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Gain theoretical know-how on vibrating rotators and Born-Oppenheimer approximation	An	Р	Instructor-created exams / Home Assignments
CO5	Gain theoretical know-how on Raman spectrum	Ap	M	Viva Voce
CO6	Gain practical knowledge on emission and absorption spectra	С	M	Group Discussion/ Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	BIOPHOTONICS					
Type of Course	Major Elective (Specialization II: Photonics)					
Semester	V					
Academic	300 - 399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Fundamental knowledge in optics, photonics and biology					
Course	Biophotonics is an interdisciplinary field that combines principles of					
Summary	physics, biology, an	s, biology, and optics to study biological systems using light-				
	based techniques. This course covers topics such as optical properties of					
	biological tissues, in	biological tissues, imaging and biosensing techniques, instrumentation,				

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

and emerging trends. Students gain both theoretical knowledge and practical skills through lectures, and projects/lab, preparing them for

careers in research, healthcare, and technology development.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding photobiology contributes to advancements in medical treatments, such as photodynamic therapy using exogenous photosensitizers.	U	Č	Written exams, quizzes
CO2	Imaging in the field of biophotonics provides a comprehensive understanding of visualization techniques at various scales within the biological system.	An	p	Quizes, presentations
CO3	Studying the principles of optical biosensing, equips individuals with the knowledge to design, develop, and apply advanced sensing technologies.	Ap	С	Written exams, experiments
CO4	Understanding the techniques of a flow cytometer, tweezers, optical responses, and the principles of photodynamic therapy fosters the development of advanced diagnostic and therapeutic techniques. Additionally, exploring This knowledge contributes to advancements in both clinical diagnostics and biological research.	Ap	C	Written exams, quizzes
CO5	Apply Photonics principles to real-world applications such as imaging and sensors	Ар	С	Mini Projects

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course Title	PHYSICS OF THE HUMAN BODY					
Type of Course	Major Elective (Specialization III: Physics in Biology)					
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	Newtonian med	chanics.				
Course	This course analyses the human body from the viewpoint of mechanics					
Summary	and its static and dynamic equilibrium. The effects of collisions on human					
	body, leading to fractures are explored. The significance of muscles of					
	the human bod	y is also analy	sed.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand & apply the laws of mechanics to the human body w.r.to	Ap	F	Instructor-created exams / Quiz
	its static equilibrium.			
CO2	Understand dynamic equilibrium of	U	F	Instructor-created
	human body.			exams / Quiz
CO3	Understand and analyse the effects of	An	F	Instructor-created
	collision of human body from a			exams / Quiz
	mechanical force viewpoint.			
CO4	Gain basic knowledge about various	U	F	Instructor-created
	supporting structures of bones, a.k.a			exams / Quiz
	Ligaments, Tendons, Cartilage and			
	how energy is stored in them.			
CO5	Basic understanding of fractures from	An	F	Instructor-created
	mechanical force viewpoint.			exams / Quiz
CO6	Gain ideas about muscle and muscle	Ap	F	Instructor-created
	activity from a mechanical viewpoint.			exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	INTRODUCTORY MEDICAL PHYSICS				
Type of Course	Major Elective	e (Specializati	on III: Physic	cs in Biology)	
Semester	V				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	A strong foundation in physics, mathematics, and basic biology concepts.				
Course Summary	The medical physics course provides an interdisciplinary exploration of the application of physics principles to medical imaging, radiation therapy, and radiation protection, emphasizing the theoretical and practical aspects essential for understanding and contributing to advancements in medical diagnostics and treatment.				

CO	CO Statement	Cognitive Level*	Knowledge	
		Levei"	Category#	Tools used
CO1	Understand the concept of biometrics	U	C	Written exams,
				quizzes
CO2	Analyse bioelectric potentials	An	С	Laboratory
				reports, projects
CO3	Identify and explain the major	U	C	Presentations,
	physiological process			written exams
CO4	Understand the principles of medical	U	С	Practical
	imaging			assessments,
				exams
CO5	Apply the principles of medical imaging	Ap	P	Case studies,
				laboratory work
CO6	Evaluate the cognitive and technical	Е	M	Oral exams,
	aspects of radiation therapy			practical exams

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	INTRODUCT	ORY BIOPH	YSICS		
Type of Course	Major Elective	(Specializati	on III: Physic	es in Biology)	
Semester	VI				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	 Higher Secondary level Physics Fundamental Mathematics Concepts: Concept of calculus- Solution of very simplest differential equation High school level Chemistry and Biology 				
Course Summary	In this course the student learn a bridge between Physics and Biology. Look at some of the biological phenomena and analyze them with math and physics to gain important insights. This course tries to show that there is a quantitative, Physical sciences approach to Biological problems.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain why is nano world so different from macro world and predict what's going on there by incorporating physical ideas like Random walk, Diffusion, probabilistic facts, etc.	U	С	Instructor- created exams, Assignments
CO2	Explain the biological systems and models by dealing with statistical mechanics and transport phenomena	U	С	Instructor- created exams
CO3	Answer many real life questions like why don't bacteria swim like fish by applying equation of motion appropriate to the nano world	Ap	Р	Instructor- created exams, Assignments
CO4	Explain the thermodynamic basis of various biochemical reactions in cells and tissues.	U	F	Instructor- created exams

CO5	Analyse the role of action potential in nerve impulses, and the physics of signal communication via neural systems.	Ap	Р	Instructor- created exams
CO6	Explain everyday phenomena and various processes in living systems by applying physical principles	An	С	Assignments/ Seminar presentations
CO7	Make quantitative predictions by making a simplified model by applying many tools given in the course	С	M	Assignment/ Group Projects/Prese ntations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Ho	B.Sc. Physics Honours					
Course Title	APPLIED NUCLEAR PHYSICS						
Type of Course	Major Elective (SPECIALIZATION IV: DATA SCIENCE AND ARTIFICIAL INTELLIGENCE)						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	4	_	-	60		
Pre-requisites	Fundamental ideas in mechanics, electromagnetism, and mathematical physics along with the basic understanding of concepts in modern physics like atomic and nuclear structure.						
Course Summary	The course in Applied Nuclear Physics provides an in-depth account of the fundamental constituents of matter, their interactions, and the underlying principles governing nuclear structure, particle behaviour, and their implications in different walks of modern technology.						

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

CO1	Understand Radioactive Processes: Explain the mechanisms and types of radioactive decay. Understand internal conversion and their roles in radioactive decay chains and environmental radioactivity.	U	С	Quizzes, Tests
CO2	Analyze Nuclear Collisions and Reactions: Describe nuclear collision processes, understand nomenclature and probes, calculate cross sections and reaction rates, and discuss examples of isotope production and nuclear reactions, including elastic scattering and resonance.	An	P	Homework Assignments
CO3	Apply Radiation Interaction Principles: Utilize the Bethe-Bloch formula to predict energy loss of heavy charged particles in matter, interpret Bragg curves, and analyze the dependence on projectile and medium. Understand gamma-ray attenuation and neutron interaction processes including attenuation and moderation.	Ap	C	Problem Sets, Projects
CO4	Explore Neutron Physics: Discuss the properties of neutrons, classify different types of neutrons, and understand the various sources of neutrons. Use neutron detectors like the BF3 counter.	An	P	Homework, Exams
CO5	Assess Biological Effects of Radiation: Evaluate the biological impacts of radiation exposure, differentiate between direct and indirect physical and chemical damage, calculate dose and dose rate, and understand dose distribution and its relative biological effectiveness. Assess human exposure from natural and artificial sources.	U	F	Virtual lab Demonstrat ions

Analytical Applications: Demonstrate the use of radiation in industrial applications. Apply analytical techniques for materials analysis. Sets, Projects

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B. Sc. Physics Honours						
Course Title	FOUNDATIONS O	OF DATA SC	IENCE				
Type of Course	Major Elective (SPECIALIZATION IV: DATA SCIENCE AND ARTIFICIAL INTELLIGENCE)						
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit Lecture Tutorial Practical Total per week per week Hours						
	4	4 4 - 60					
Pre-requisites	Fundamental Programming Concepts in Python Basic idea of linear algebra						
Course Summary	The course will intro probability and statis			-	•		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will evaluate eigenvalues and eigenvectors to decompose matrices, enabling them to analyze and interpret data transformations effectively		P	instructor created exams / Assignment
CO2	proficiency in solving linear	Ap	P	Instructor created exams /

	equations using linear algebra and understanding the geometric interpretation of solutions.			Assignment
CO3	students will apply fundamental probability concepts to solve real world problems	Ap	P	Assignment / Quiz
CO4	studentswill utilize statistical techniques for data interpretation and decision-making.	Ap	P	Instructor created exams / Assignment
CO5	Studentswill apply sampling techniques and hypothesis tests to make inferences about populations from sample data, using one-tailed, wo-tailed tests, and ANOVA for analysis.	Ap	С	Assignment / Case Studies
CO6	Develop critical thinking and problem-solving skills	E	М	Assignment / Case Studies

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C)

Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours							
Course Title	EXPLORATORY I	EXPLORATORY DATA ANALYSIS USING PYTHON						
Type of Course	-	Major Elective (SPECIALIZATION IV: DATA SCIENCE AND ARTIFICIAL INTELLIGENCE)						
Semester	V	V						
Academic Level	300 -399	300 -399						
Course Details	Credit	Credit Lecture Tutorial Practical Total Hours						
	4	4	-	-	60			

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural

Pre-requisites	Fundamental Programming Concepts in Python Basic idea of Statistics
Course Summary	This course provides insight into the basic concepts of data analysis and different visualization tools and techniques and teaches the application of these techniques using Python packages.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the types of data and the applications of data science	U	С	Instructor-create d exams / Quiz
CO2	Analyse the irregularities present in the data and perform data cleaning	An	С	Problem-solving assessments
СОЗ	Become familiar with data format & programs used in data analysis	U	F	Practical Assignment / Observation of Practical Skills
CO4	Understand & apply Pandas module for data analysis	Ap	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO5	Understand & apply Seaborn module for data visualization	Ap	P	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO6	Learners will develop skills in advanced features of spreadsheets such as macros, protecting data sheets and workbooks, utilizing split, freeze, and hide options effectively	Ap	P	Assignments/ Case Studies

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C)

Procedural Knowledge (P) Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C)

Programme	B. Sc. Physics Honours					
Course Title	FOUNDATIONS OF ARTIFICIAL INTELLIGENCE					
Type of Course	Major Elective (SPECIALIZATION IV: DATA SCIENCE AND ARTIFICIAL INTELLIGENCE)					
Semester	VI					
Academic Level	300 - 399					
Course Details	Credit	Lecture per week	Tutorial per week	Practica L per week	Total Hours	
	4	4	-	-	60	
Pre-requisites	Awareness of algori	thmic approa	ches			
Course Summary	The course introduces the concept of artificial intelligence. The various knowledge representation and Knowledge Inference methods are introduced. The course introduces the application of AI in various fields.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Able to gain insight into the evolution of key ideas and technologies by exploring Artificial Intelligence history and its foundational concepts.	U	С	Instructor created exams /Quiz/Assignment/ Seminar
CO2	Able to acquire knowledge and skills to understand, design, implement intelligent agents to perceive, reason and act within their environments.	U	С	Instructor created exams/ Quiz/Assignment/ Seminar
CO3	Proficiency in various uninformed and informed search strategies along with constraint satisfaction problem solving methods.	U	С	Instructor created exams/ Quiz/Assignment/ Seminar

CO4	Ability to design and implement logical agents and construct ontologies that capture the semantics of a domain, facilitating knowledge representation.	U	С	Instructor create d exams/ Quiz/Assignment/ Seminar
CO5	Understand the ethical considerations of AI and their societal impacts and gain insights into the future trajectory of AI by analysing the emerging trends.	U	С	Instructor created exams/ Quiz/Assignment/ Seminar
CO6	Represent various AI problems using algorithmic approaches and enhance problem-solving skills by visualizing solutions through the utilization of software tools.	Ap	С, Р	Practical Assignment / Observation of Practical Skills

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Programme	B. Sc. Physics Honours					
Course Title	MACHINE LEARNING USING PYTHON					
Type of Course	Major Elective (SPECIALIZATION IV: DATA SCIENCE AND ARTIFICIAL INTELLIGENCE)					
Semester	VI					
Academic Level	300 -399					
Course Details	Credit Lecture Tutorial Practical per week per week					
	4	4	-	-	60	
Pre-requisites	Awareness of algorithmic approaches Data Analysis Using Python					
Course Summary	This course deals with various algorithms to enable computers to learn data without being explicitly programmed. An insight into various types of machine learning algorithms, strategies for model generation and evaluation are given in this course.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the concepts and importance of Machine Learning, its types	U	С	Instructor created exams / Quiz
CO2	Understand & apply Scikit-learn module for Machine Learning	Ap	Р	Instructor created exams, Observation of Practical Skills
CO3	Understand the supervised learning algorithms and its application	Ap	P	Instructor created exams/ Quiz/Assignment/ Seminar
CO4	Understand the unsupervised learning algorithms and its application	Ap	P	Instructor created exams/ Quiz/Assignment/ Seminar
CO5	Understand the semi supervised learning algorithms and its application	Ap	P	Practical assignments and practical tests
CO6	Develop critical thinking skills to analyze and solve complex problems using machine learning approaches	Ap	P	Practical assignments and practical tests

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C)

Programme	B.Sc. Physics Honours				
Course Title	ASTROPHY	ASTROPHYSICS			
Type of Course	Major Electi	ve			
Semester	V	V			
Academic Level	300 - 399				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
	week per week per week				
	4	4	-	-	60

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

Pre-requisites	PHY4CJ205 Modern Physics
Course Summary	This course gives a pedagogical introduction to astronomy and
	astrophysics by introducing the students the techniques to measure
	astronomical parameters, the properties of the Sun, stellar evolution and
	properties of galaxies and an overview of the Universe.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate a deep understanding of theoretical frameworks in astronomy, including celestial mechanics, stellar structure, and cosmology.	U	C	Instructor- created exams / Quiz
CO2	Apply basic physical principles from a broad range of topics in physics to address complex astronomical phenomena.	Ap	Р	Viva Voce / Home Assignments/ Seminar Presentations
CO3	Get knowledge of positional astronomy, astronomical parameters and tools.	U	С	Instructor- created exams / Quiz
CO4	Able to explain the physics of Sun and the evolution of stars.	U	С	Instructor- created exams / Quiz
CO5	Describe the morphology and classification of galaxies and galaxy clusters.	U	С	Instructor- created exams / Quiz
CO6	Expose scientific knowledge about the origin and evolution of the universe.	U	С	Instructor- created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours
Course Title	SPACE PHYSICS
Type of Course	Elective in Major
Semester	VI

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	PHY4CJ205- N	Modern Physic	S		
Course Summary	This course introduces the student to Space Physics. The various subdisciplines of the topic such as structure and properties of the solar system with emphasis on Earth and the Sun and their magnetic fields, the elements of planetary science, the rudiments of space weather as well as basics of space flight dynamics are dealt with in detail.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic structure and parameters of the Earth and the Sun including their atmospheres and their magnetic fields	U	С	Instructor- created exams / Quiz
CO2	Understand the basic elements of planetary science including the structure of the solar system and the classification of its constituents	U	С	Viva Voce / Home Assignments/S eminar Presentations
CO3	Understand the basics of space weather and its various phenomena such as solar wind, interplanetary space and solar activities like coronal mass ejections	U	С	Instructor- created exams / Quiz
CO4	Understand the theory behind the orbital dynamics and the technology of rocket and spacecraft propulsion	Ap	С	Instructor- created exams / Quiz
CO5	Interpret the complex structures and dynamics of Earth's magnetosphere, including the polar cusp, plasma sheet, ring current, radiation belts, and associated wave phenomena.	Ap	С	Instructor- created exams / Quiz

CO6	Equip with the knowledge and skills	U	С	Instructor-
	necessary to apply principles of space			created exams /
	science in analyzing and understanding			Quiz
	various phenomena within our solar			
	system and beyond.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics	B.Sc. Physics Honours			
Course Title	ATMOSPHE	ATMOSPHERIC PHYSICS			
Type of Course	Major Electiv	ve			
Semester	VI				
Academic Level	300 - 399				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	4	-	-	60
Pre-requisites	1. Basic therm	nodynamics.			
	2. Basic electr	ostatics.			
Course Summary	This course	explores the	structure and	d dynamics of	of the Earth's
	atmosphere. The vertical structure of the atmosphere, atmospheric				
	thermodynamics, Earth's heat and radiation budget as well as				
	atmospheric e	electricity are	discussed. Ba	asics of clima	te change and
	atmospheric p	hotochemistry	are also intro	duced.	

CO	CO Statement	Cognitive	_	Evaluation Tools
		Level*	Category#	used
CO1	Understand the basic structure of the atmosphere and its constituents stratified to several layers. Understand rainfall, its distribution as well as the role played by winds.	R	F	Instructor-created exams / Quiz
CO2	Obtain basic idea of global warming. Apply the concepts of pressure, temperature, humidity to atmosphere and their role in climate change.	Ap	Р	Instructor-created exams / Quiz
CO3	Apply thermodynamical concepts and latent energy to analyse stability of air parcel	An	С	Instructor-created exams / Quiz

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

CO4	Understand the atmospheric energy budget and the role played by radiation in it.	Ap	F	Instructor-created exams / Quiz
CO5	Understand basic atmospheric photochemistry and the role of trace gases.	U	F	Instructor-created exams / Quiz
CO6	Understand cloud physics and thunderstorm electricity. Apply the concept of electric field to atmosphere in the form of lightning and learn about lightning protection measures.	Ap	Р	Instructor-created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours					
Course Title	QUANTUM (QUANTUM COMPUTATION AND QUANTUM INFORMATION				
Type of Course	Major Electiv	e				
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	1. Linear Algeb	ora			1	
	2. Basic Quant	um Mechanics				
Course	The Quantum	Computation a	and Quantum	Information c	ourse provides	
Summary	students with a	comprehensiv	e understandii	ng of quantum	computing and	
	quantum info	ormation theo	ory. Fundam	ental princip	les including	
	superposition,	entanglement,	and quantum	gates are explo	ored, laying the	
	groundwork fo	or quantum co	omputation. S	tudents delve	into advanced	
	quantum algor	rithms such a	s Shor's and	Grover's algo	orithms, which	
	promise expon	nential speedu	p over classi	cal counterpar	ts for specific	
	tasks. Additionally, the course examines practical applications like					
	quantum teleportation, super dense coding, quantum error correction, and					
	quantum key	distribution, s	howcasing the	e real-world i	mplications of	
	quantum infor	mation proces	sing. By the	end of the co	ourse, students	

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

emerge equipped with both theoretical knowledge and practical insights, positioning them at the forefront of this rapidly evolving field.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Comprehensive Understanding of Mathematical Formulations of Quantum Mechanics.	U	С	Viva Voce/ Seminar / Quiz
CO2	Proficiency in Analyzing and Utilizing Entanglement.	An	P	Practical Assignment / Group Discussion
CO3	Mastery of Quantum Gates and Circuits.	Ap	P	Seminar Presentation / Group Tutorial Work
CO4	Application of Entanglement and Management of Quantum Noise.	An	P	Instructor-created exams / Home Assignments
CO5	Proficient Use of Tools in Quantum Information Theory.	Ap	M	Viva Voce
CO6	Integration and Application of Quantum Concepts in Practical Scenarios.	С	M	Group Discussion/ Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN					
	PHYSICS					
Type of Course	Major Elective					
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	1. Fundamental Prog	gramming Co	ncepts in Py	thon		
	2. Basic idea of stati	stics and line	ar algebra			
Course	This course explores the fundamentals of Artificial Intelligence and					
Summary	Introduces the basic concepts of Machine Learning Techniques. Also					
	explores various clus	stering, class	ification and	regression tec	hniques.	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp the concepts and importance of Artificial Intelligence, historical context and how the brain processes information.	U	С	Instructor- created exams / Quiz
CO2	Acquire a solid understanding of machine learning principles, algorithms, and evaluation techniques and apply them effectively to realworld problems.	U	С	Instructor- created exams / Home Assignments
CO3	Understand neural networks, perceptron, linear regression, and multilayer perceptron (MLP) and practical implementation for real-world problems using MLP.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Acquire a comprehensive understanding of deep learning models, their comparison with traditional machine learning, various types of deep neural networks and their architecture.	U	С	Instructor- created exams / Home Assignments
CO5	Design and develop machine learning models using Keras and MLP for various problems in the real world.	Ap	Р	Practical Assignment / Observation of Practical Skills

Programme	B.Sc. Physics Honours					
Course Title	DIGITAL SIGNAL PROCESSING					
Type of Course	Major Electiv	Major Elective				
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	1. Fundamental Mathematics Concepts: sequences and Series,					
	Integration, Matrices. Fourier Theorem					
	2. Basic idea d	of transducers.				

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course	This course outlines the fundamentals of signal processing by digital
Summary	means.

Course Outcomes (CO):

CO	CO Statement	_		Evaluation Tools
		Level*	Category#	used
CO1	Understand the characteristics of			Quizzes,
	discrete-time signals and systems.	U	C	homework
				assignments,
				exams
CO2	Apply the Z-transform to analyse			Problem-solving
	discrete-time signals and systems.	Ap	P	exercises,
				projects
CO3	Analyse the frequency content of			Homework
	discrete-time signals using the Z-	An	C	assignments,
	transform.			exams
CO4	Design discrete-time filters for specific			Laboratory
	signal processing tasks.	C	M	assignments,
				projects
CO5	Implement signal processing algorithms	Ap	P	Projects,
	using digital signal processing tools.			simulations
CO6	Interpret and evaluate the performance	Е	C	Case studies,
	of signal processing systems.			presentations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours					
Course Title	DIGITAL ELECTRONICS					
Type of Course	Major Elective					
Semester	VIII					
Academic Level	400 – 499					
Course Details	Credit Lecture Tutorial Practical Total					
	per week per week Hours					
	4	4	-	-	60	
Pre-requisites	PHY2CJ101- ELEC	TRONICS I	& PHY6CJ3	05- ELECTR	ONICS II	
Course Summary	The course covers	the design	and analysis	s of combina	tional logic	
	circuits, sequential circuits using flip-flops, counters, and registers, as					
	well as techniques for interfacing digital systems with the analog world,					
	providing a compa	ehensive ur	nderstanding	of digital l	ogic design	
	principles and applic	cations.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

CO1	Design and analyze	Ap	P	Homework
G 0 2	combinational logic circuits		D.	assignments, exams
CO2	Implement sequential circuits using flip-flops	Ap	P	Laboratory experiments,
	using mp-nops			projects
CO3	Design and construct various types of counters	С	P	Design projects, simulations
CO4	Analyze the operation of registers in digital systems	U	С	Quizzes, concept tests
CO5	Interface digital systems with analog components	Ap	P	Case studies, practical exams
CO6	Evaluate and troubleshoot digital- analog interfaces	An	P	Laboratory reports, demonstrations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	COMMUNIC	CATION ELF	CTRONICS			
Type of Course	Major Electiv	ve				
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites	PHY2CJ101-	ELECTRONI	CS I & PHY6	CJ305- ELECT	ΓRONICS II	
Course Summary	Communication	on Electronic	s delves into	the theory	and practical	
	implementatio	on of electr	ronic circuit	s and syste	ms used in	
	telecommunications, covering topics such as modulation techniques,					
	signal process	signal processing, and transmission line theory, to facilitate efficient and				
	reliable comm	unication netv	vorks.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate an understanding of amplitude and frequency modulation techniques and their applications	U	С	Examinations, Assignments
CO2	Apply pulse and digital modulation techniques to design and analyze communication systems	Ap	P	Problem Sets, Lab Reports

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

CO3	Analyze the components and operation	An	P	Research
	of radio transmitters, receivers, and			Papers,
	antennas in communication systems			Projects
CO4	Evaluate the principles and techniques	Е	P	Presentations,
	of digital signal processing as applied to			Discussions
	communication systems			
CO5	Explain the functionality and	U	С	Written
	characteristics of radio transmitters,			Reports,
	receivers, and antennas			Essays
CO6	Synthesize knowledge of modulation	C	P	Capstone
	techniques, radio systems, and digital			Projects, Oral
	signal processing for designing and			Defenses
	implementing communication systems			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics	B.Sc. Physics Honours					
Course Title	PLASMA PI	PLASMA PHYSICS					
Type of Course	Major Electi	ive					
Semester	VIII						
Academic Level	400 - 499						
Course Details	Credit	Credit Lecture per Tutorial Practical Total Hours					
		week per week per week					
	4	4	-	-	60		
Pre-requisites	A strong four	ndation in clas	sical mechanic	es, electromagn	netism,		
	quantum mec	hanics, and fl	uid dynamics i	s essential as p	orerequisites		
	for the course	e in plasma ph	ysics.				
Course Summary	The course in	n plasma phys	sics provides a	n in-depth exp	oloration of the		
	behavior, pro	behavior, properties, and applications of ionized gases, encompassing					
	fundamental	fundamental theories, experimental techniques, and practical					
	implications a	across various	fields such as	astrophysics, f	fusion research,		
	and industrial	l plasma techn	ologies.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Demonstrate an understanding of the basic principles of plasma physics, including plasma formation and properties	U	С	Examinations, Assignments

CO2	Apply fluid dynamics concepts to analyze the behavior of plasmas and the propagation of waves within them	Ap	P	Problem Sets, Lab Reports
CO3	Analyze the equilibrium and stability of plasma systems using relevant theoretical models and mathematical techniques	An	P	Research Papers, Projects
CO4	Evaluate plasma behavior and interactions based on kinetic theory, considering particle distribution functions and collisional processes	Е	Р	Presentations, Discussions
CO5	Explain the physical mechanisms underlying wave propagation and instabilities in plasmas, considering both linear and nonlinear effects	U	С	Written Reports, Essays
* Par	Synthesize knowledge of plasma physics theories and principles to propose solutions to complex plasma-related problems in various applications	С	М	Capstone Projects, Oral Defenses

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	NONLINEAR DY	NONLINEAR DYNAMICS AND CHAOS				
Type of Course	Major Elective	Major Elective				
Semester	VIII					
Academic Level	400 - 499	400 - 499				
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Numerical Technique	Numerical Techniques, Classical Mechanics				
Course	To understand the no	To understand the nonlinear dynamics and chaotic theory				
Summary						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

CO1	Understanding of Nonlinear Dynamics	U	F	Internal Exam
CO2	Analyze the behavior of dynamical	Ap	P	Internal Exam
	systems			
CO3	Exploration of Chaos Theory	U	С	Internal Exam
CO4	Numerical Analysis Skills	An	P	Internal Exam,
				Assignment
CO5	Apply the techniques of nonlinear	Ap	P	Internal Exam,
	dynamics to physical processes			Assignment
CO6	Carry out simulation of Nonlinear	Е	P	Assignemt,Inter
	systems			nal Exam

Programme	B.Sc. Physics	Honours					
Course Title	INTRODUCT	INTRODUCTORY GENERAL RELATIVITY					
Type of Course	Major Electiv	Major Elective					
Semester	VIII						
Academic	400 - 499						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites	1. Special	relativity.					
	2. Tensors	S.					
Course	This course i	ntroduces Ein	stein's genera	al theory of 1	relativity in a		
Summary	quantitative n	quantitative manner. The mathematical foundations required are					
	developed before	ore discussion	of the theory	7. The mathem	natical concept		
	behind black h	oles is also inti	oduced.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Review of tensors, as well as understand tensor calculus	U	С	Instructor- created exams / Quiz
CO2	Understand the metric tensor and how curved spacetime is described by the metric tensor.	Ap	С	Instructor- created exams / Quiz
CO3	Understand Christoffel's symbols and the Riemann–Christoffel curvature tensor.	Ap	С	Instructor- created exams / Quiz / Home Assignments.

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

CO4	Understand how Parallel displacement can be used to detect curvature.	Ap	С	Instructor- created exams / Quiz
CO5	Understand equivalence principle and principle of general covariance to arrive at Einstein's equations	U	С	Instructor- created exams / Quiz
CO6	Understand the basic mathematical theory behind black holes.	U	С	Instructor- created exams / Quiz

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Programme	B.Sc. Physics	B.Sc. Physics Honours					
Course Title	INTRODUC	INTRODUCTORY QUANTUM FIELD THEORY					
Type of Course	Major Electi	ive					
Semester	VIII						
Academic Level	400 - 499						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites	PHY5CJ303-	Quantum Me	chanics I and				
	PHY7CJ403-	Quantum Me	chanics II				
Course Summary	The course pr	ovides a comp	rehensive over	rview of classic	cal field theory,		
	followed by	a detailed exp	oloration of th	ne quantization	processes for		
	scalar fields, Dirac fields, and the electromagnetic field, aiming to						
	elucidate the	fundamental	principles un	derlying mod	ern theoretical		
	physics						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate an understanding of classical field theory and its applications in describing physical phenomena		С	Examinations, Assignments

Metacognitive Knowledge (M)

CO2	Apply quantization techniques to scalar fields, Dirac fields, and the electromagnetic field	Ap	Р	Problem Sets, Lab Reports
CO3	Analyze the consequences of field quantization on particle interactions and quantum field theory	An	Р	Research Papers, Projects
CO4	Evaluate the mathematical formalism of field quantization and its consistency with experimental observations	Е	С	Presentations, Discussions
CO5	Explain the implications of field quantization for relativistic quantum mechanics and gauge theories	U	С	Written Reports, Essays
CO6	Synthesize knowledge of classical field theory and field quantization to propose solutions to theoretical problems in modern physics	С	M	Capstone Projects, Oral Defenses

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics	B.Sc. Physics Honours				
Course Title	NUCLEAR	PHYSICS				
Type of Course	Major Electi	Major Elective				
Semester	VIII	VIII				
Academic Level	400 - 499	400 - 499				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	4	-	-	60	
Pre-requisites	РНҮ6СЈ303:	PHY6CJ303: NUCLEAR AND PARTICLE PHYSICS				
Course Summary	This course e	xplores advan	ced nuclear and	d particle physi	cs.	

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Interpret the properties of nucleus, binding energy, angular momentum, two-nucleon scattering, spin dependence, tensor force, partial wave concept and theory of deuteron structure	An	С	Instructor- created exams / Quiz
CO2	Elucidate the theory of various types of nuclear decay, selection rules of transition, concept of parity and multipole moments.	U	С	Instructor- created exams / Quiz
CO3	Comparison of various nuclear models.	An	Р	Instructor- created exams / Home Assignments
CO4	Comparison of nuclear processes like fission and fusion and the concept of nuclear reactor.	An	Р	Instructor- created exams / Home Assignments
CO5	Demonstrate the working of one or two nuclear radiation detectors of different types	Ap	Р	Seminar Presentation / Group Tutorial Work
CO6	Compare basic interactions and classify the elementary particles. Interactions are linked with the concept of symmetry and conservation laws. Understand Sakata model, Gellmann- Okubo mass formula, Quark mode and their significance.	An	P	Seminar Presentation / Group Tutorial Work / Group Project

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

MINOR COURSES

Programme	B.Sc. Physics Honours					
Course Title	MECHANIC	MECHANICS AND OPTICS				
Type of Course	Minor (GRO SYSTEMS)	Minor (GROUP I: MATHEMATICS FOR PHYSICAL SYSTEMS)				
Semester	I					
Academic Level	100 – 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	3	-	2	75	
Pre-requisites	Fundamental	s of vectors, ca	alculus and kir	nematics.		
Course Summary	applied to se	This course explores Newton's Laws of Motion and how they can be applied to solve different mechanical systems, and also discusses various phenomena exhibited by light.				

CO	CO Statement		Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Apply Newton's Laws of Motion	Ap	P	Instructor-created
	to solve different mechanical			exams / Home
	systems			Assignments
CO2	Apply work-energy theorem to	Ap	P	Instructor-created
	solve different mechanical	_		exams / Home
	systems			Assignments
CO3	Analyse conservative systems	An	P	Instructor-created
	and solve them using the			exams / Home
	conservation of mechanical			Assignments
	energy.			C
CO4	Understand the basic nature and			Instructor-created
	different phenomena exhibited	U	C	exams / Home
	by light.			Assignments
CO5	Develop a skill to analyse the	Ap	P	Seminar Presentation /
	behaviour of light beams in	_		Group Tutorial Work
	devices consisting of mirrors and			1
	lenses.			
CO6	Develop skills to set up and	С	P	Practical Assignment /
	perform experiments to test			Observation of
	Newton's Laws of Motion, work			Practical Skills / Viva
	energy theorem and different			Voce
	phenomenon exhibited by light.			
* - Ren	nember (R), Understand (U), Apply	(Ap), Ana	lyse (An), Ev	aluate (E), Create (C)

- Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Programme	B.Sc. Physics	B.Sc. Physics Honours				
Course Title	ELECTRON	ELECTROMAGNETISM AND NETWORK THEOREMS				
Type of Course	Minor (GRC SYSTEMS)	Minor (GROUP I: MATHEMATICS FOR PHYSICAL SYSTEMS)				
Semester	II	II				
Academic Level	100 - 199	100 - 199				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	3	-	2	75	
Pre-requisites	Fundamental	s of vector algo	ebra, calculus	and basic elect	tronics	
Course Summary	This course explores different characteristics of electric and magnetic					
				for solving var onents in ac circ	rious electrical cuits.	

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Revise the concept of charge, coulomb force, electric field, electric dipole and apply Gauss theorem for calculating electric field.	Ap	P	Instructor-created exams / Home Assignments
CO2	Identify the sources of magnetism, explain properties of magnetic forces, behaviour of charged particles in magnetic field and apply Amperes law for calculating magnetic field.	Ap	P	Instructor-created exams / Home Assignments
CO3	Analyse various network theorems and apply these theorems for solving complex electrical circuits.	An	P	Instructor-created exams / Home Assignments
CO4	Analyse the behaviour of various electrical components like resistors, capacitors and inductors in pure ac circuit.	An	Р	Instructor-created exams / Home Assignments

CO5	Design and analyse the behaviour of ac circuits with more than one electrical component.	An	Р	Seminar Presentation / Group Tutorial Work
CO6	Develop skills to set up and perform experiments to analyse different properties of electric and magnetic field. Design and construct ac circuits consisting various circuit elements and analyse its properties.	Ap	M	Practical Assignment / Observation of Practical Skills / Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	MATHEMATIC	MATHEMATICAL METHODS FOR PHYSICS				
Type of Course	Minor (GROUP)	Minor (GROUP I: MATHEMATICS FOR PHYSICAL SYSTEMS)				
Semester	III					
Academic Level	200 –299					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Fundamentals of v	ectors, linear	algebra, diffe	rential equation	ns	
	coordinate systems	s and familia	rity with basic	concepts in pl	nysics.	
Course	This course explores fundamental principles and applications of vector					
Summary	analysis, complex	functions,	differential e	equations and	curvilinear	
	coordinates in elec	tromagnetism	and engineer	ing contexts.		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will attain a strong foundational understanding about vector calculus, complex numbers, differential equations and curvilinear coordinates	U	Categoryn	Instructor- created exams / Quiz
CO2	Students will develop analytical proficiency which enables them to analyse and interpret complex physical phenomena through the application of mathematical principles.	Ap	M	Practical Assignment / Observation of Practical Skills

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

CO3	Students will cultivate advanced problem-solving skills.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO4	Students will enhance their ability to model and represent physical systems mathematically for describing and understanding complex phenomena.	Ap	M	Practical Assignment / Observation of Practical Skills / Home Assignments
CO5	Students will recognize and appreciate the interdisciplinary applications of mathematical methods.	Ap	M	Seminar Presentation / Group Discussion
CO6	Students will refine their critical thinking which encourages independent inquiry and problem-solving approaches in tackling challenging problems and scenarios.	Ap	М	Group Discussion/ Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours					
Course Title	PROPERTI	PROPERTIES OF MATTER & THERMODYNAMICS				
Type of Course	Minor (GRC	OUP II: MATI	ERIALS PHY	(SICS)		
Semester	I					
Academic Level	100 - 199	100 - 199				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	3	-	2	75	
Pre-requisites	1. Awarenes	s of Newton's	first law, Hoo	ke's law and s	tatic friction	
Course Summary	understanding of fundamental concepts of Equilibrium and Elasticity					
	and their appl	lications				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

CO1	Understand the concept of the center of gravity and its significance in determining stability. Solve problems involving the equilibrium of rigid bodies subjected to various forces and torques. Apply principles of equilibrium to analyze real world scenarios. Get the concept of elastic moduli and their significance in characterizing material properties.	U	С	Instructor- created exams / Quiz
CO2	Understand density and pressure in a fluid and their effects in fluid behaviour. Explain the principle of buoyancy and its application in determining the behavior of floating and submerged objects. Understand Bernoulli's principle and its significance in describing the behaviour of fluids in motion. Analyse viscosity and turbulence.	Ap	P	Practical Assignment / Observation of Practical Skills
CO3	Get the concepts of temperature and thermal equilibrium. Demonstrate a clear understanding of the first law of thermodynamics, including the principles of conservation of energy and the relationships between heat, work, and internal energy. analyze various thermodynamic processes, including the work done during volume changes and the paths between thermodynamic states.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Calculate and interpret the internal energy of ideal gases, understanding the heat capacities and behavior of ideal gases under different conditions, including adiabatic processes.	U	С	Instructor- created exams / Home Assignments
CO5	Grasp the significance of the second law of thermodynamics in determining the direction of thermodynamic processes. Analyze heat engines and refrigerators, applying the principles of the second law to evaluate their efficiency.	Ap	Р	One Minute Reflection Writing assignments
CO6	understand fundamental concepts in thermodynamics and apply them in practical situations.	Ap	Р	Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	MODERN PHYSICS AND NUCLEAR PHYSICS				
Type of Course	Minor (GROUP II: MATERIALS PHYSICS)				
Semester	II				
Academic Level	100 - 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	1.Foundational understanding of classical physics, particularly in mechanics and electromagnetism. 2. Proficiency in algebra, calculus and trigonometry.				
Course Summary	This course explores the dual nature of particles and waves, as well as the structure and behavior of atomic and nuclear systems. Through theoretical discussions and practical applications, students will investigate electromagnetic waves, particle-wave duality phenomena, atomic structure, nuclear composition, and nuclear transformations.				

CO	CO Statement		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the duality of particles and	U	C	Instructor-
	waves, Describe experimental evidence			created exams /
	supporting the wave-particle duality,			Quiz
	including the photoelectric effect and			
	Compton effect.			
CO2	Define pair production and its	Ap	P	Seminar
	significance in quantum mechanics,			Presentation /
	Understand the concept of matter waves			Group Tutorial
	proposed by Louis de Broglie.			Work
CO3	Explain the structure of the atom	Ap	P	Practical
	according to the nuclear model,			Assignment /
	Understand Energy Levels and Spectra			Observation of
				Practical Skills
CO4	Investigate Nuclear Structure	U	С	Instructor-
	Understand stable nuclei, binding			created exams /
	energy, and models such as the liquid			Home
	drop model and shell model			Assignments

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

CO5	Understand radioactive decay processes and their implications for nuclear stability,	Ap	Р	One Minute Reflection Writing
				assignments
CO6	Analyse nuclear reactions, including	Ap	P	Writing
	fission and fusion, and their relevance in			assignments
	energy production and stellar evolution.			/Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	SOLID STATE PH	SOLID STATE PHYSICS AND SPECTROSCOPY			
Type of Course	Minor (GROUP II	Minor (GROUP II: MATERIALS PHYSICS)			
Semester	III	III			
Academic Level	200 - 299				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge calculus, atomic theory and electromagnetic spectrum				
Course	This course discusses the concepts of quantum mechanics, band theory				
Summary	and different types of	and different types of spectroscopy at a fundamental level.			

СО	CO Statement		Knowledge Category#	Evaluation Tools used
CO1	Define quantum mechanics and its fundamental principles, explain the concept of quantization, understand the mathematical representation of wave functions and their interpretation. Application of Schrodinger equation for solving different physical systems.	Ap	Р	Instructor- created exams / Quiz/Assign ments
CO2	Understanding of Crystalline and Amorphous Solids and distinguishing between them. Understand the relationship between bonding and properties in different types of crystals	U	С	Instructor created Assignment/ Exams/Semi nars
CO3	Explain band theory of solids and apply it in explaining the electronic structure of materials. Describe the formation of energy bands and band gaps in solids and their influence on material properties.	Ap	P	Seminar/Pre sentation / Group Tutorial Work

CO4	Explain the concept of quantization of energy and its importance in spectroscopy. Identify the types of molecular energies. Describe the process of absorption and emission of radiation and understand the Einstein coefficients governing these processes and their relation.	U	С	Instructor- created exams / Home assignments
CO5	Classify various spectroscopic methods used for sample analysis, like microwave spectroscopy, Infrared Spectroscopy, Electronic spectroscopy, Raman spectroscopy and analyse the possibility of applying these techniques to identify material properties.	An	P	One Minute Reflection Writing assignments and exams
CO6	Develop practical skills to perform spectra and material property related experiments and analyse characteristics of different spectra.	С	М	Practical Assignment/ Observation of Practical Skills / Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Hono	ours			
Course Title	SEMICONDUCTO	OR PHYSIC	S AND ELE	CTRONICS	
Type of Course	Minor (GROUP III: SEMICONDUCTOR PHYSICS)				
Semester	I				
Academic Level	100 - 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	1.Basic understanding of physics and mathematics, including algebra and calculus. 2.Familiarity with fundamental concepts in electricity and magnetism.				
Course Summary	This course covers fundamental concepts in electronics, focusing on				
	both theoretical und	both theoretical understanding and practical applications. The syllabus			
	includes topics such	n as atomic	models, sem	iconductor ph	ysics, diode
	and transistor circu	uits, voltage	stabilization	, amplifiers,	and digital
	electronics. The course aims to equip students with the necessary				

knowledge and skills to analyze, design, and troubleshoot electronic

CO	CO Statement	_	Knowledge	Evaluation	
		Level*	Category#	Tools used	
CO1	Master the energy band structure of	U	F	Instructor-	
	semiconductors, differentiate between			created	
	intrinsic and extrinsic semiconductors, grasp			exams / Quiz	
	majority and minority carrier concepts, and				
	proficiently analyse pn junctions.				
CO2	Analyse diode rectifiers and filtering	An	C	Practical	
	circuits, understand transistor basics and			Assignment /	
	various configurations and load line analyse			Observation	
				of Practical	
				Skills	
CO3	Gain insight into voltage stabilisation using	С	P	Seminar	
	Zener diodes. Design and understand the			Presentation	
	working of CE amplifiers. Get introduced to			/ Group	
	operational amplifiers.			Tutorial	
				Work	
CO4	Understand Boolean algebra basics, the	Ap	\mathbf{C}	Instructor-	
	functioning of OR, AND, NOT gates, and			created	
	the fundamental theorems. Master truth			exams /	
	tables, symbolic representation, universal			Home	
	gates, XOR gates and adder circuits.			Assignments	
CO6	Practical session will help in understanding	С	M	One Minute	
	the working of pn junction diode,			Reflection	
	transistors. Will comprehend the working of			Writing	
	logic gates in digital electronics			assignments	
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					

⁽R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours
Course Title	FUNDAMENTALS OF OPTICS
Type of Course	Minor (GROUP III: SEMICONDUCTOR PHYSICS)
Semester	II
Academic Level	100 - 199

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basics of Physics and Chemistry (Plus Two Level)				
Course Summary	This syllabus explores how light behaves, from reflection and bending to creating specific light sources and transmitting them through thin cables.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyze the principles of reflection			Instructor-
	and refraction, applying them to	An	С	created exams /
	explain image formation by mirrors			Quiz/ Practical
	and lenses.			Assignment
CO2	Describe the phenomenon of wave			Practical
	interference and diffraction, and	Ap	P	Assignment /
	solve problems using concepts like			Observation of
	the double-slit experiment.			Practical Skills
CO3	Explain the concept of polarization			Instructor-
	and its applications, including the	U	C	created exams /
	use of polarizers and analyzers.			Quiz/ Practical
				Assignment
CO4	Describe the operating principles of			Instructor-
	lasers, including stimulated	U	C	created exams /
	emission and population inversion,			Home
	and identify different laser types.			Assignments
CO5	Explain the concept of total internal			Seminar
	reflection and apply it to understand	Ap	F	Presentation /
	light propagation through optical			Group Tutorial
	fibers.			Work
CO6	Able to explain the advantages and	U	С	Viva Voce
	applications of optical fibers in			
	communication and sensing.			
* D	mambar (D) IIndonstand (II) Amply (A \ A 1 (A) E14- ()	E) C (C)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	ELECTRON	ELECTRONIC COMMUNICATION			
Type of Course	Minor (GRC	Minor (GROUP III: SEMICONDUCTOR PHYSICS)			
Semester	III	III			
Academic Level	200 - 299				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4 3 - 2 75				
Pre-requisites	Fundamentals of EM wave characteristics and electronics				
Course Summary	This course explores the characteristics of the EM wave spectrum, various communication systems and there implementation.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain main parts and different types of electronic communication system. Define electromagnetic spectrum and its application in communication systems.	Ap	Р	Instructor-created exams / Home Assignments
CO2	Calculate voltage gain, current gain, attenuation. Explain relation between Q, resonant frequency and bandwidth.	Ap	Р	Instructor-created exams / Home Assignments
CO3	Explain the basic concepts of AM and FM. Compare AM and FM and calculate parameters such as modulation index, band width.	An	Р	Instructor-created exams / Home Assignments
CO4	Explain the fundamental concepts in digital communication such as quantizing error, analog to digital conversion, sampling, PAM, PWM, PPM, difference between asynchronous and synchronous data transmission.	U	С	Instructor-created exams / Home Assignments
CO5	Explain the reasons for the growing use of microwaves and millimetre waves in communications. Identify the microwave and millimetre-wave	An	P	Seminar Presentation / Group Tutorial Work

	band segments and various microwave components used in this communication system.			
CO6	Design and construct various circuit elements useful in communication systems. Design experiments to identify different characteristics of electromagnetic spectrum.	Ap	P	Practical Assignment / Observation of Practical Skills / Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honor	ırs			
Course Title	ELECTRICITY AN	D MAGNE	TISM		
Type of Course	Minor (GROUP IV	Minor (GROUP IV: OPTICAL PHYSICS)			
Semester	I				
Academic Level	100-199				
Course Details	Credit 4	Lecture per week	Tutorial per week	Practical per week 2	Total Hours 75
Pre-requisites	A strong foundation in introductory physics, including mechanics, thermodynamics, and basic concepts of electricity and magnetism. Proficiency in algebra, trigonometry				
Course Summary	This paper provides selectricity and magnet practical scenarios electromagnetism.	etism, enablir	ng them to ap	-	

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and grasp the concept of electric charge, its properties, including quantization and conservation principles.	U	С	Instructor- created exams / Quiz

^{# -} Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

CO2	Students will analyze electric fields produced by various charge distributions, including point charges, electric dipoles, and charged infinite sheets. students will develop the ability to visualize electric fields and understand their behavior in different	Ap	P	Practical Assignment / Observation of Practical Skills
CO3	spatial configurations. Understand the concept of electric dipoles, analyze the forces and torques acting on them in uniform electric fields, and relate these to practical applications.	Ap	P	Seminar Presentation / Group Tutorial Work
CO4	Apply Gauss's law to calculate electric flux through closed surfaces, understand its implications for charge distribution, and analyze the behavior of electric fields in various scenarios.	U	С	Instructor- created exams / Home Assignments
CO5	calculate electric potential due to point charges, charged conductors, and other charge distributions, and analyze the concept of electric potential energy.	Ap	P	One Minute Reflection Writing assignments
CO6	Through practical experiments and theoretical analysis, students will explore applications of Gauss's law, such as determining charges on conductors and understanding electric potential distributions.	Ap	P	Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours				
Course Title	OPTICS AND LAS	OPTICS AND LASERS			
Type of Course	Minor (GROUP IV	Minor (GROUP IV: OPTICAL PHYSICS)			
Semester	II	II			
Academic Level	100 - 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	1. Basics of Physics and Chemistry (Plus Two Level)				

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

Course Summary	This course explores light's properties, reflection, refraction, and
	applications in phenomena like interference, diffraction, polarization,
	and lasers.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the fundamental properties of light, including reflection, refraction, and the electromagnetic spectrum.	U	C	Instructor-created exams / Quiz
CO2	Apply the laws of reflection and refraction to solve problems involving mirrors and lenses.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	Analyze the behavior of light waves using concepts like interference and diffraction.	An	С	Practical Assignment/ Seminar Presentation / Group Tutorial Work
CO4	Distinguish between Fresnel and Fraunhofer diffraction and explain how they affect light propagation.	An	С	Instructor-created exams / Home Assignments
CO5	Recognize different types of polarization and explain methods for producing and manipulating polarized light.	U	Р	Instructor-created exams / Home Assignments
CO6	Apply the knowledge of optics and lasers to understand real-world applications in different fields.	Е	Р	Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours
Course Title	ATOMIC STRUCTURE AND SPECTROSCOPY
Type of Course	Minor (GROUP IV: OPTICAL PHYSICS)
Semester	III
Academic	200 - 299
Level	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Basic concepts related to optics, electromagnetism, wave mechanics, and electronics.					
Course Summary	This course provide phenomena and spect as electromagnetic war ray production, diffuspectroscopy.	roscopic met aves, black b	hods. Studen ody radiatio	ts will explorents, photoelectr	e topics such ic effect, X-	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Studying electromagnetic waves, black body radiation, photoelectric effect, X-ray production, diffraction, and De Broglie waves.	U	Categoryn	Instructor- created exams / Quiz
CO2	Understands the dual nature of light and matter, leading to insights into quantum phenomena like particle confinement and uncertainty principles in position, momentum, energy, and time.	Ap	P	Practical Assignment / Observation of Practical Skills
CO3	Understanding the nuclear atom model, electron orbits, and atomic spectra, including the Bohr atom's energy levels and line spectra,	Ap	P	Seminar Presentation / Group Tutorial Work
CO4	Elucidates the fundamental structure and behavior of atoms, offering insights into their spectral characteristics and origins.	U	С	Instructor- created exams / Home Assignments
CO5	Exploring spectroscopy introduces the electromagnetic spectrum's quantized energy, various molecular energies, and spectroscopic techniques, addressing spectral line width, absorption emission phenomena, EinstAssignmentein coefficients, and laser principles.	U	P	Practical skills/ Assignments
CO6	Important spectroscopic techniques used for sample analysis, like microwave spectroscopy, Infrared Spectroscopy, Electronic spectroscopy	U	P	Assignments/ Internal Exams

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

and	Raman	spectroscopy	are		
introd	uced				

Programme	B.Sc. Physics Hono	B.Sc. Physics Honours					
Course Title	NON-CONVENTIONAL ENERGY SOURCES						
Type of Course	Minor (GROUP V	Minor (GROUP V: ENERGY PHYSICS)					
Semester	Ι						
Academic Level	100 - 109	100 - 109					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic knowledge of	different for	ns of energy.				
Course	This course provides	a comprehe	nsive introdu	ction to variou	ıs renewable		
Summary	energy resources wi	ith a focus of	n non-conve	entional sourc	es. Students		
	will explore the principles, technologies, advantages, disadvantages, and						
	practical application	s of solar, v	vind, geother	rmal, ocean, a	and biomass		
	energy.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Develop a foundational understanding of energy resources, focusing on non-conventional sources such as solar energy, and grasp key terms and concepts including solar constant, radiation measurements, collectors, and practical applications of solar power.	U	С	Instructor-created exams / Quiz
CO2	Discover wind energy comprehensively, covering utilization, advantages, disadvantages, environmental impact, sources, conversion principles, components, pros and	Ap	P	Practical Assignment / Observation of Practical Skills

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	cons, wind-electric power plants, economics, and operational challenges of large generators.			
CO3	Gain insight into geothermal energy, exploring Earth's interior structure, geothermal systems like hot springs and various resources, and understanding the advantages, disadvantages, and applications of geothermal energy in comparison to other forms.	Ар	P	Seminar Presentation / Group Tutorial Work
CO4	Explore ocean energy, focusing on tidal and wave energy, understanding tidal power plant components, economic aspects, OTEC working principles, efficiency, types, and applications, considering advantages and disadvantages.	U	C	Instructor-created exams / Home Assignments
CO5	Understand biomass with its resources and conversion processes, explore biogas applications and plants	Ap	P	Writing assignments
CO6	Study fuel cells, hydrogen energy, government schemes, and subsidies, and conduct plant visits for performance analysis.	Ap	P	Seminar Presentation /Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	FLUID MEC	HANICS & T	THERMODY	NAMICS	
Type of Course	Minor (GRC	UP V: ENE	RGY PHYSIC	CS)	
Semester	II				
Academic Level	100 - 199				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	3	-	2	75
Pre-requisites	1.Basic knowl	edge in units,	vectors, press	ure, work, med	hanical
	energy and int	ternal energy			
	2. Basic know	ledge about sp	pecific heat an	d molar specifi	c heat
	capacity				
Course Summary	Students will	understand the	behavior of fl	uids, including	gas and liquid
	dynamics, der	nsity, pressure	, buoyancy, fl	uid flow, and	applications of
	Bernoulli's eq	uation. Stude	nts will also u	nderstand the f	irst and second
	laws of thermodynamics, including entropy, and analyze the directions				
	of thermodynamic processes and will analyze the principles behind heat				
	engines and re	efrigerators an	d solve numer	rical problems	based on these
	topics.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fluid behavior, the properties of gasses and liquids dynamics including density and pressure in a fluid., buoyancy and fluid flow, applications of Bernoulli's equation.		С	Instructor- created exams / Quiz
CO2	Analyze Viscosity and Turbulence in fluids, identifying their effects on fluid behavior.	An	Р	Practical Assignment / Observation of Practical Skills
CO3	Grasp the concepts of temperature and thermal equilibrium as well as thermal equilibrium and apply it to calculate the quantity of heat transferred in various processes.	Ap	P	Seminar Presentation / Group Tutorial Work
CO4	Understand the first law of thermodynamics and Second law of thermodynamics, and entropy. Analyze the directions of thermodynamic processes and calculate the change in entropy indifferent thermodynamic processes	U	С	Instructor- created exams / Home Assignments

CO5	Analyze the principles behind Heat engines and Refrigerators and solve numerical problems based on these topics.	Ap	Р	One Minute Reflection Writing assignments
CO6	Demonstrate comprehension of the second law of thermodynamics, including its application to the Carnot cycle.	-	P	Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours						
Course Title	OPTICS AND SPECTROSCOPY						
Type of Course	Minor (GROUP V:	Minor (GROUP V: ENERGY PHYSICS)					
Semester	III	III					
Academic	200 - 299	200 - 299					
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basics of Physics and	Basics of Physics and Chemistry (Plus Two Level)					
Course	This course explores the fundamental properties of light, its interaction						
Summary	with matter, and spec	troscopic tec	hniques used	l to analyze m	olecules.		

CO	CO Statement			Evaluation Tools
		Level*	Category#	used
CO1	Explain the laws of reflection and refraction, and how they influence light behavior.		F	Instructor-created exams / Quiz
CO2	Describe the electromagnetic spectrum and differentiate between wave and particle properties of light.	U	С	Seminar Presentation / Group Tutorial Work
CO3	Analyze the principles of interference and apply them to phenomena like Young's double slit experiment.	An	P	Practical Assignment / Observation of Practical Skills
CO4	Explain the concept of polarization and apply it to phenomena like Brewster's Law.	Ap	P	Instructor-created exams / Home Assignments

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

CO5	Discuss the principles of optical activity and how it relates to specific rotation.	Ap	С	Practical Assignment / Observation of Practical Skills
CO6	Explain the fundamental concepts of spectroscopy, including energy quantization, absorption/emission, and different spectroscopic methods like microwave and infrared spectroscopy.	An	P	Instructor created exam/Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

VOCATIONAL MINOR COURSES

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours					
Course Title	INTRODUCTORY MATERIALS SCIENCE					
Type of Course	Vocational Minor	Vocational Minor				
	(GROUP I: TECHNIQUES IN MATERIALS PHYSICS)					
Semester	I					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4 3 - 2 75					
Pre-requisites	1. Basics of Physics and Chemistry (Higher Secondary Level)					
Course	Explore the diverse world of materials and their properties through					
Summary	experimentation and	analysis.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate a fundamental understanding of the different classes of materials (metals, ceramics, polymers, and composites) and their properties.	U	F	Instructor-created exams / Quiz
CO2	Apply electrical and magnetic property concepts to analyze and design materials for various applications.	Ap	С	Instructor-created exams / Quiz
CO3	Explain the interaction of light with materials and its impact on optical properties.	An	С	Seminar Presentation / Group Tutorial Work
CO4	Relate thermal properties of materials to their behaviour in different temperature environments.	An	С	Instructor-created exams / Home Assignments
CO5	Develop practical skills in using laboratory equipment to measure and characterize material properties.	An	P	Practical Assignment / Observation of Practical Skills

CO6	Analyze and interpret experimental	An	P	Practical	
	data to draw meaningful			Assignment / Viva	
	conclusions.			Voce	
* - Ren	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)				
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Programme	B.Sc. Physics Honours							
Course Title	SYNTHESIS OF NANOMATERIALS							
Type of Course	Vocational Minor (GROUP I: TECHNIQUES IN MATERIALS PHYSICS)							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week per week Hours						
	4 3 - 2 75							
Pre-requisites	1. PHY1VN101- Introductory Materials Science							
Course	This course gives an introduction to the fascinating world of							
Summary	nanomaterials and diverse synthesis methods.							

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used

CO1	Define and classify nanomaterials and	U	F	Instructor-
	explain size-dependent properties.			created exams /
				Quiz
CO2	Analyze various physical and chemical	An	С	Instructor-
	methods for nanomaterial synthesis,			created exams /
	including their advantages, limitations, and			Home
	applications.			Assignments
CO3	Explain nanofabrication techniques: Grasp	Ap	С	Seminar
	the concepts and applications of different			Presentation /
	nanolithography techniques like electron			Group Tutorial
	beam and photonic methods.			Work
CO4	Select appropriate synthesis methods:	Ap	P	Instructor-
	Analyze material requirements and choose			created exams /
	suitable synthesis methods for specific			Home
	applications.			Assignments
CO5	Perform basic nanomaterial synthesis:	Е	P	Practical
	Conduct laboratory experiments to prepare			Assignment/
	nanomaterials using different techniques			Observation of
	learned.			Practical Skills
CO6	Work collaboratively: Successfully	Е	P	Practical
	participate in team-based projects and			Assignment /
	experiments related to nanomaterials.			Viva Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honours
Course Title	CHARACTERIZATIONS AND APPLICATIONS OF
	NANOMATERIALS
	(GROUP I: TECHNIQUES IN MATERIALS PHYSICS)
Type of Course	Vocational Minor

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	1. PHY1VN101	- Introductor	y Materials S	cience	
	2. PHY3VN201	- Characteriz	ations and A	pplications of	
	Nanomaterial	S			
Course	Master the art of characterizing nanomaterials with microscopy,				
Summary	diffraction, and spec	etroscopy tec	chniques, un	locking their	secrets and
	exploring their divers	se application	ıs.		

n Tools
d
-created
uiz
-created
ome
nts
on /
orial
,
nt /
on of
kills
nt /
on of
kills
on /
nt

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours				
Course Title	SCIENTIFIC DOCUMENTATION				
Type of Course	Vocational Minor				
	(GROUP I: TECHNIQUES IN MATERIALS PHYSICS)				
Semester	VIII				
Academic Level	300 - 399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Basic computer operating knowledge				
Course Summary	Master the art of characterizing nanomaterials with microscopy,				
	diffraction, and spe exploring their diver			llocking their	secrets and

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Create professional-quality scientific documents, including research papers, reports, and theses, using LaTeX typesetting system.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO2	Develop proficiency in formatting and structuring scientific content effectively, adhering to established conventions and guidelines	Ap	Р	Instructor-created exams / Home Assignments
CO3	Gain skills in incorporating complex mathematical equations, figures, and tables seamlessly into LaTeX documents to enhance clarity and understanding.	An	Р	Practical Assignment / Observation of Practical Skills
CO4	Learn to manage citations and references efficiently using BibTeX or	An	Р	Practical Assignment /

	BibLaTeX, ensuring accuracy and consistency in academic writing.			Observation of Practical Skills
CO5	Acquire techniques for designing and delivering engaging presentations and posters for scientific conferences and academic events using LaTeX Beamer class.	Ap	Р	Seminar Presentation / Writing Assignment
CO6	Develop collaborative writing and version control skills, enabling them to work effectively with co-authors and collaborators on LaTeX documents for scientific communication and publication.	Е	Р	Seminar Presentation / Group Tutorial Work

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honor	ırs			
Course Title	PYTHON BASICS				
Type of Course	Vocational Minor (GROUP II:	DATA ANA	LYSIS IN PI	HYSICS)
Semester	I				
Academic Level	100 - 199				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	Basic computer know	vledge			
Course Summary	This course introduced with the aid of mach introduced with employee in machine learning	nine learning hasis on Nun	. As the first	step, Python	language is

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

CO1	Understand the significance of algorithm & flowchart in development of computer programs	U	F	Instructor-created exams
CO2	Understand and apply basic Python syntax	Ap	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO3	Understand and apply various conditional statements, as well as understand the modular nature of a program using functions in Python.	Ap	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO4	Apply various modules for several tasks in Python	Ap	P	Instructor-created exams, Practical Assignment / Observation of Practical Skills/ Home Assignments
CO5	Understand in detail and apply the Numpy module in data analysis of physical data.	Ap	P	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO6	Understand and apply the matplotlib module for graphical representation of data in various pictorial formats.	С	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills/ Home Assignments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours
Course Title	DATA ANALYSIS IN PHYSICS USING PYTHON
Type of Course	Vocational Minor (GROUP II: DATA ANALYSIS IN PHYSICS)
Semester	II
Academic	100 - 199
Level	

Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	PHY1VN102- Python Basics				
Course Summary	This paper continues from the previous paper for data analysis. More data analysis tools are introduced to be used in machine learning, as well as in physical data analysis. In addition, essential statistics required for data analysis is also introduced.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Become familiar with data format & programs used in data analysis	U	F	Practical Assignment / Observation of Practical Skills
CO2	Understand & apply Pandas module for data analysis	Ар	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO3	Understand & apply Seaborn module for data visualization	Ap	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO4	Understand the significance of statistical analyses as well as error analysis in physical measurements.	U	F	Instructor-created exams
CO5	Understand the significance of few distributions commonly found in physical measurements.	U	F	Instructor-created exams/ Home Assignments
CO6	Apply statistical methods to physical measurements	Е	Р	Home Assignments
* - Rer	member (R), Understand (U), Apply (Ap)	, Analyse (A	An), Evaluate	(E), Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honor	B.Sc. Physics Honours			
Course Title	DATA ANALYSIS IN PHYSICS USING MACHINE LEARNING				
Type of Course	Vocational Minor (GROUP II: DATA ANALYSIS IN PHYSICS)				
Semester	III				
Academic Level	200 - 299				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	 Fundamentals of Programming Concepts PHY1VN102- Python Basics PHY2VN102- Data Analysis in Physics Using Python 				
Course Summary	and model training te KNN, and cluster	This course explores Machine Learning fundamentals: types, challenges, and model training techniques like Linear Regression, Gradient Descent, KNN, and clustering. Analyze data using Scikit-learn, handle classification problems with performance evaluation measures on real			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp the concepts and importance of Machine Learning, its types, and realworld problem-solving applications.	U	С	Instructor- created exams / Quiz
CO2	Understand linear regression, model evaluation metrics, and various types of regression. They will apply this knowledge practically using examples.	Ap	Р	Practical Assignment / Observation of Practical Skills

CO3	Master in K-Nearest Neighbor classification, decision trees, entropy, Gini index, and K-means clustering, demonstrated through practical applications with sample datasets.	Ap	P	Seminar Presentation / Group Tutorial Work
CO4	Apply classification algorithms to MNIST data, including binary classifiers and multilabel classification, and interpret performance measures like confusion matrix, precision, recall, and ROC curve	U	С	Instructor- created exams / Home Assignments
CO5	Learn to implement and construct a ML model for one of the problems mentioned.	Ap	Р	One Minute Reflection Writing assignments/ Vice Voce

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Programme	B.Sc. Physics Honor	B.Sc. Physics Honours			
Course Title	APPLICATIONS OF ADVANCED MACHINE LEARNING & ARTIFICIAL INTELLIGENCE IN PHYSICS				
Type of Course	Vocational Minor (C	GROUP II: 1	DATA ANA	LYSIS IN PH	IYSICS)
Semester	VIII				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	4	-	-	60
Pre-requisites	 PHY1VN102- Python Basics PHY2VN102- Data Analysis in Physics Using Python PHY3VN202- Data Analysis in Physics Using Machine Learning 				earning

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

Course	This course explores the fundamentals of Artificial Intelligence: Basic
Summary	idea about AI. It also explains the advanced concepts of Machine
	Learning Techniques. Deep Learning and CNNs are introduced.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Acquire expertise in DBSCAN for spatial clustering and neural networks for comprehensive data analysis and pattern recognition proficiency.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO2	Grasp the significance of SVM, apply it using Python, adjust parameters, evaluate pros/cons, and employ it across varied applications.	U	С	Instructor- created exams / Quiz
CO3	Understand the Deep Learning concepts, utilise the TensorFlow/Keras framework, grasp neural network variants, and understand various neural network architectures.	U	С	Seminar Presentation / Group Tutorial Work
CO4	Develop machine learning models for practical applications, enhancing skills in classification, feature selection, and model evaluation techniques.	Ap	Р	Instructor- created exams / Home Assignments
CO5	Grasp the concepts and importance of Artificial Intelligence, historical context and how the brain processes information.	U	С	One Minute Reflection Writing assignments

^{* -} Remember I, Understand (U), Apply (Ap), Analyse (An), Evaluate I, Create I

^{# -} Factual Knowledge(F) Conceptual Knowledge I Procedural Knowledge (P) Metacognitive Knowledge (M)

GENERAL FOUNDATION COURSES

Programme	B.Sc. Physics Honours							
Course Title	PHYSICS IN	PHYSICS IN DAILY LIFE						
Type of Course	Multi-Disciplinary Course 1							
Semester	I	I						
Academic Level	100 – 199							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours			
		week	per week	per week				
	3	3	-	-	45			
Pre-requisites	High school l	evel science						
Course Summary	This course of	explores the us	se of physics	in daily life. V	Working of the			
	daily use devices, physical principles coming to play in the kitchen and							
	in sports are	explored.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply the principles of physics to several day-to-day phenomena in the kitchen.	Ap	F	Instructor-created exams / Quiz
CO2	Understand the working of common kitchen appliances, as well as the usage of several types of materials as kitchen utensils.	U	F	Instructor-created exams / Quiz
CO3	Apply the principles of physics to the sport of cricket.	Ap	F	Instructor-created exams / Quiz

CO4	Apply the principles of physics to the sport of football.	Ap	F	Instructor-created exams / Quiz
CO5	Understand the connection between resonance and sound phenomena.	U	F	Instructor-created exams / Quiz
CO6	Understand the working of common appliances like photostat machine, air conditioner etc.	Ap	F	Instructor-created exams / Quiz

^{* -} Remember I, Understand (U), Apply (Ap), Analyse (An), Evaluate I, Create I

- Factual Knowledge(F) Conceptual Knowledge I Procedural Knowledge (P) Metacognitive Knowledge (M)

Programme	B.Sc. Physics	B.Sc. Physics Honours						
Course Title	ASTRONON	ASTRONOMY AND STARGAZING						
Type of Course	Multi-Discip	linary Course	2					
Semester	II							
Academic Level	100 – 199							
Course Details	Credit	Credit Lecture per Tutorial Practical Total Hours						
		week	per week	per week				
	3	3	-	-	45			
Pre-requisites	High school l	evel science						
Course Summary	This introduc	tory course in	amateur astro	nomy provides	s students with			
	a foundations	al understand	ing of observ	ational astron	omy, celestial			
	objects and	basic techniq	ues for ama	teur stargazin	g. Through a			
	combination	combination of lectures, classroom demonstrations and field						
	observations,	observations, students will gain practical skills and theoretical						
	knowledge to	explore the w	onders of the	night sky.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the development of	U	С	Instructor-
	astronomical knowledge from the ancient			created
	models to the modern astronomical			exams / Quiz
	theories.			
CO2	Understand the scientific principles	U	С	Instructor-
	underlying astronomical observations and			created
	the characteristics and properties of			exams / Quiz
	celestial objects			
CO3	Apply observational techniques and	Ap	P	Observational
	methods to effectively navigate the night			Home
	sky.			Assignment /
				Viva Voce
CO4	Analyze astronomical phenomena such as	An	P	Demonstratio
	phases of the moon, alignments of			n Skills / Viva
	constellations and planets.			Voce
CO5	Foster an interest in citizen science and	An	P	Instructor-
	amateur contributions to astronomy.			created Home
				Assignments
CO6	Develop a scientific temper, curiosity and	Ap	P	Instructor-
	a sense of wonder about the universe			created Home
				Assignments

^{* -} Remember I, Understand (U), Apply (Ap), Analyse (An), Evaluate I, Create I

Metacognitive Knowledge (M)

IMPORTANT: This course is for the Double Major pathway only.

^{# -} Factual Knowledge(F) Conceptual Knowledge I Procedural Knowledge (P)

Programme	B.Sc. Physics Honours					
Course Title	RENEWABLE ENI	RENEWABLE ENERGY SOURCES				
Type of Course	Value-Added Cour	Value-Added Course 1				
Semester	Ш					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	3	3	-	0	45	
Pre-requisites	Basic knowledge of c	different forn	ns of energy.			
Course	This course provides	a compreher	sive introduc	ction to variou	s renewable	
Summary	energy resources with	n a focus on n	on-convention	onal sources. S	Students will	
	explore the principles, technologies, advantages, disadvantages, and					
	practical applications	s of solar, w	ind, geother	mal, ocean, a	and biomass	
	energy.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Develop a foundational understanding of	U	С	Instructor-
	energy resources, focusing on non-			created
	conventional sources such as solar energy,			exams / Quiz
	and grasp key terms and concepts including			
	solar constant, radiation measurements,			
	collectors, and practical applications of solar			
	power.			
CO2	Discover wind energy comprehensively,	Ap	P	Practical
	covering utilization, advantages,			Assignment /

	disadvantages, environmental impact,			Observation
	sources, conversion principles, components,			of Practical
	pros and cons, wind-electric power plants,			Skills
	economics, and operational challenges of			
	large generators.			
CO3	Gain insight into geothermal energy,	Ap	P	Seminar
	exploring Earth's interior structure,			Presentation /
	geothermal systems like hot springs and			Group
	various resources, and understanding the			Tutorial
	advantages, disadvantages, and applications			Work
	of geothermal energy in comparison to other			
	forms.			
CO4	Explore ocean energy, focusing on tidal and	U	С	Instructor-
	wave energy, understanding tidal power plant			created
	components, economic aspects, OTEC			exams /
	working principles, efficiency, types, and			Home
	applications, considering advantages and			Assignments
	disadvantages.			
CO5	Understand biomass with its resources and	Ap	P	Writing
	conversion processes, explore biogas			assignments
	applications and plants			
CO6	Study fuel cells, hydrogen energy,	Ap	P	Seminar
	government schemes, and subsidies, and			Presentation
	conduct plant visits for performance analysis.			/Viva Voce

^{* -} Remember I, Understand (U), Apply (Ap), Analyse (An), Evaluate I, Create I

Metacognitive Knowledge (M)

IMPORTANT: This course is for the Double Major pathway only.

^{# -} Factual Knowledge(F) Conceptual Knowledge I Procedural Knowledge (P)

Programme	B.Sc. Physics Honours						
Course Title	SCIENCE COMMUNICATION						
Type of Course	Value-Added	Value-Added Course 2					
Semester	IV						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	3	3	-	-	45		
Pre-requisites	Basic computer	r operating kno	owledge.				
Course	This course in	ntroduces Late	ex programm	ing for prepa	ring scientific		
Summary	documents and	presentations	. This paper a	lso introduces	formal science		
	communication	n, of which pr	resentation an	d document w	riting forms a		
	part.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Learn the basic structure of a	U	F	Instructor-created
	LaTeX document, creating a			exams / Quiz /
	new latex document			Practical Assignment
CO2	Understanding how to split a	U	F	Instructor-created
	document into logical parts.			exams / Quiz /
				Practical Assignment
CO3	Understand text and	U	F	Instructor-created
	paragraph formatting in			exams / Quiz /
				Practical Assignment

	Latex, including insertion of			
	numbered and bulleted lists.			
CO4	Understand how to insert tables, pictures, table of contents and equations in latex document.	U	F	Instructor-created exams / Quiz / Practical Assignment
CO5	Understand how to prepare a presentation using Latex.	Ap	F	Instructor-created exams / Quiz / Practical Assignment
CO6	Acquire the skillset required for formal science communication, including knowledge about journals, presentation skills and time management.	U	C	Instructor-created exams / Quiz

^{* -} Remember I, Understand (U), Apply (Ap), Analyse (An), Evaluate I, Create I

Metacognitive Knowledge (M)

SEC2 consists of 2 hrs. of lecture / tutorial classes and 1 hr. of demonstration/ practical classes per week.

Evaluation: Considering the nature of the SEC2 course, the internal evaluation for the 25 marks, including the 5 marks in the open ended module, will be entirely based on the practical examination and viva.

Programme	B.Sc. Physics Hon	B.Sc. Physics Honours				
Course Title	PYTHON FOR D	PYTHON FOR DATA ANALYSIS				
Type of Course	Skill Enhancement Course 2					
Semester	V	V				
Academic Level	100-199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	3	3 2 - 1 45				
Pre-requisites	1. Fundamentals of	1. Fundamentals of Programming Concepts				

^{# -} Factual Knowledge(F) Conceptual Knowledge I Procedural Knowledge (P)

VIMALA COLLEGE (AUTONOMOUS)

FOUR-YEAR UNDERGRADUATE PROGRAMME (VM-FYUGP)

Course Summary

This course explores the fundamental concepts of algorithms, control statements, functions, Numpy arrays, Matplotlib, and Seaborn for data visualization and practical application.

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate Python for data analysis, including numerical operations, file handling, control flow, functions, and NumPy arrays.	U	С	Instructor- created exams / Quiz
CO2	Understand and master Pandas functionalities for data manipulation, sorting, handling missing data, statistical analysis, time series operations, and data merging/concatenation techniques in Python.	Ap	P	Instructor- created exams / Home Assignments
CO3	Master the visualisation tools in Pandas and Seaborn libraries using physics data. Draw various plots, interpret findings, and utilise the Seaborn library for advanced visualisation techniques.	Ap	Р	Seminar Presentation/ Group Tutorial Work
CO4	Understand the various data file formats and learn to read and handle data files in Jupyter Notebooks, including CSV, XLS, TAB, and DAT formats.	U	С	Instructor- created exams / Home Assignments
CO5	Demonstrate problem-solving skills to solve practical physics problems by creating programs for real data analysis and utilise the different functionalities available in Pandas and Seaborn Python Packages.	Ap	P	One Minute Reflection Writing assignments/ Viva Voce
CO6	Develop skills in data manipulation and analysis using the pandas library, including dataframe creation, data wrangling, descriptive statistics, and visualization techniques using matplotlib and seaborn	Ap	Р	Practical Assignment / Observation of Practical Skills

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge Metacognitive Knowledge (M)

Programme	B.Sc. Physics Honours page
-----------	----------------------------

Course Title	ELECTRICAL AND PHOTOVOLTAIC DEVICES						
Type of Course	pe of Course Skill Enhancement Course 3						
Semester	V						
Academic Level	100 - 199						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	3	3	-	-	45		
Pre-requisites	Basics of electromagnetism and electronics.						
Course Summary	This course explores the working of various electrical, photovoltaic and						
	storage devices.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Understand and analyse the working of a DC motor.	An	P	Instructor-created exams / Home Assignments
CO2	Identify different electrical elements used in house wiring and demonstrate the working of these elements.	Ap	P	Instructor-created exams / Home Assignments
CO3	Explain various conventional and non-conventional power generation techniques and discuss the possibility of using these techniques in your state.	U	Р	Instructor-created exams / Home Assignments
CO4	Analyse and determine the basic characteristics of Photovoltaic Cell. Design a model unit.	An	С	Instructor-created exams / Home Assignments
CO5	Explain the scope of different battery technologies and analyse the technical complexity to design the same.	Ap	P	Seminar Presentation / Group Tutorial Work
CO6	Generate skill to wind motors, wiring a home, develop storage devices.	С	Р	Practical Assignment / Observation of Practical Skills / Viva Voce

- * Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- # Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)